Search results for: Artificial Bee Colony Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4150

Search results for: Artificial Bee Colony Algorithm

820 Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator

Authors: A. Ameur, B. Mokhtari, N. Essounbouli, L. Mokrani

Abstract:

This paper presents a speed sensorless direct torque control scheme using space vector modulation (DTC-SVM) for permanent magnet synchronous motor (PMSM) drive based a Model Reference Adaptive System (MRAS) algorithm and stator resistance estimator. The MRAS is utilized to estimate speed and stator resistance and compensate the effects of parameter variation on stator resistance, which makes flux and torque estimation more accurate and insensitive to parameter variation. In other hand the use of SVM method reduces the torque ripple while achieving a good dynamic response. Simulation results are presented and show the effectiveness of the proposed method.

Keywords: MRAS, PMSM, SVM, DTC, Speed and Resistance estimation, Sensorless drive

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3868
819 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

Authors: Zanariah Abdul Majid, Mohamed Suleiman

Abstract:

The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.

Keywords: Numerical methods, parallel method, block method, higher order ODEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
818 Particle Swarm Optimization Based PID Power System Stabilizer for a Synchronous Machine

Authors: Gowrishankar Kasilingam

Abstract:

This paper proposes a swarm intelligence method that yields optimal Proportional-Integral-Derivative (PID) Controller parameters of a power system stabilizer (PSS) in a single machine infinite bus system. The proposed method utilizes the Particle Swarm Optimization (PSO) algorithm approach to generate the optimal tuning parameters. The paper is modeled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under several load conditions. At the same operating point, the PID-PSS parameters are also tuned by Ziegler-Nichols method. The dynamic performance of proposed controller is compared with the conventional Ziegler-Nichols method of PID tuning controller to demonstrate its advantage. The analysis reveals the effectiveness of the proposed PSO based PID controller.

Keywords: Particle Swarm Optimization, PID Controller, Power System Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037
817 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
816 Image Retrieval Using Fused Features

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.

Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
815 Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System

Authors: Waqas Ahmed, S Sajjad Haider Zaidi

Abstract:

For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.

Keywords: Data Acquisition, fast frequency transforms, Lab VIEW software, weak signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
814 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
813 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator

Authors: Neda Navidi, Rene Jr. Landry

Abstract:

Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.

Keywords: Driving behavior, integration, IMU, GNSS, monitoring, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
812 Mobile Robot Navigation Using Local Model Networks

Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany

Abstract:

Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.

Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
811 Twitter Sentiment Analysis during the Lockdown on New Zealand

Authors: Smah Doeban Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
810 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: Discrete time, linear estimation, Kalman filter, Kalman filter gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
809 Exploring the Ambiguity Resolution in Spacecraft Attitude Determination Using GNSS Phase Measurement

Authors: Lv Meibo, Naqvi Najam Abbas, Li YanJun

Abstract:

Attitude Determination (AD) of a spacecraft using the phase measurements of the Global Navigation Satellite System (GNSS) is an active area of research. Various attitude determination algorithms have been developed in yester years for spacecrafts using different sensors but the last two decades have witnessed a phenomenal increase in research related with GPS receivers as a stand-alone sensor for determining the attitude of satellite using the phase measurements of the signals from GNSS. The GNSS-based Attitude determination algorithms have been experimented in many real missions. The problem of AD algorithms using GNSS phase measurements has two important parts; the ambiguity resolution and the determining of attitude. Ambiguity resolution is the widely addressed topic in literature for implementing the AD algorithm using GNSS phase measurements for achieving the accuracy of millimeter level. This paper broadly overviews the different techniques for resolving the integer ambiguities encountered in AD using GNSS phase measurements.

Keywords: Attitude Determination, Ambiguity Resolution, GNSS, LAMBDA Method, Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
808 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation

Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana

Abstract:

In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.

Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4432
807 GEP Considering Purchase Prices, Profits of IPPs and Reliability Criteria Using Hybrid GA and PSO

Authors: H. Shayeghi, H. Hosseini, A. Shabani, M. Mahdavi

Abstract:

In this paper, optimal generation expansion planning (GEP) is investigated considering purchase prices, profits of independent power producers (IPPs) and reliability criteria using a new method based on hybrid coded Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). In this approach, optimal purchase price of each IPP is obtained by HCGA and reliability criteria are calculated by PSO technique. It should be noted that reliability criteria and the rate of carbon dioxide (CO2) emission have been considered as constraints of the GEP problem. Finally, the proposed method has been tested on the case study system. The results evaluation show that the proposed method can simply obtain optimal purchase prices of IPPs and is a fast method for calculation of reliability criteria in expansion planning. Also, considering the optimal purchase prices and profits of IPPs in generation expansion planning are caused that the expansion costs are decreased and the problem is solved more exactly.

Keywords: GEP Problem, IPPs, Reliability Criteria, GA, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
806 Analysis of Diverse Cluster Ensemble Techniques

Authors: S. Sarumathi, N. Shanthi, P. Ranjetha

Abstract:

Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.

Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
805 A Survey: Clustering Ensembles Techniques

Authors: Reza Ghaemi , Md. Nasir Sulaiman , Hamidah Ibrahim , Norwati Mustapha

Abstract:

The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

Keywords: Clustering Ensembles, Combinational Algorithm, Consensus Function, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3447
804 A Generic Approach to Achieve Optimal Server Consolidation by Using Existing Servers in Virtualized Data Center

Authors: Siyuan Jing, Kun She

Abstract:

Virtualization-based server consolidation has been proven to be an ideal technique to solve the server sprawl problem by consolidating multiple virtualized servers onto a few physical servers leading to improved resource utilization and return on investment. In this paper, we solve this problem by using existing servers, which are heterogeneous and diversely preferred by IT managers. Five practical consolidation rules are introduced, and a decision model is proposed to optimally allocate source services to physical target servers while maximizing the average resource utilization and preference value. Our model can be regarded as a multi-objective multi-dimension bin-packing (MOMDBP) problem with constraints, which is strongly NP-hard. An improved grouping generic algorithm (GGA) is introduced for the problem. Extensive simulations were performed and the results are given.

Keywords: GGA-based Heuristics, Preference, Real-worldConstraints, Resource Utilization, Server Consolidation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
803 Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform

Authors: E T. Rakgati, E. Matlotse

Abstract:

In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.

Keywords: Reluctance dc machine, current waveform, design optimisation, finite element analysis, armature reaction effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
802 A Distributed Approach to Extract High Utility Itemsets from XML Data

Authors: S. Kannimuthu, K. Premalatha

Abstract:

This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.

Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
801 A Combination of Similarity Ranking and Time for Social Research Paper Searching

Authors: P. Jomsri

Abstract:

Nowadays social media are important tools for web resource discovery. The performance and capabilities of web searches are vital, especially search results from social research paper bookmarking. This paper proposes a new algorithm for ranking method that is a combination of similarity ranking with paper posted time or CSTRank. The paper posted time is static ranking for improving search results. For this particular study, the paper posted time is combined with similarity ranking to produce a better ranking than other methods such as similarity ranking or SimRank. The retrieval performance of combination rankings is evaluated using mean values of NDCG. The evaluation in the experiments implies that the chosen CSTRank ranking by using weight score at ratio 90:10 can improve the efficiency of research paper searching on social bookmarking websites.

Keywords: combination ranking, information retrieval, time, similarity ranking, static ranking, weight score

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
800 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
799 MIMO Broadcast Scheduling for Weighted Sum-rate Maximization

Authors: Swadhin Kumar Mishra, Sidhartha Panda, C. Ardil

Abstract:

Multiple-Input-Multiple-Output (MIMO) is one of the most important communication techniques that allow wireless systems to achieve higher data rate. To overcome the practical difficulties in implementing Dirty Paper Coding (DPC), various suboptimal MIMO Broadcast (MIMO-BC) scheduling algorithms are employed which choose the best set of users among all the users. In this paper we discuss such a sub-optimal MIMO-BC scheduling algorithm which employs antenna selection at the receiver side. The channels for the users considered here are not Identical and Independent Distributed (IID) so that users at the receiver side do not get equal opportunity for communication. So we introduce a method of applying weights to channels of the users which are not IID in such a way that each of the users gets equal opportunity for communication. The effect of weights on overall sum-rate achieved by the system has been investigated and presented.

Keywords: Antenna selection, Identical and Independent Distributed (IID), Sum-rate capacity, Weighted sum rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
798 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk

Authors: Margaret F. Shipley

Abstract:

Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.

Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
797 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.

Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
796 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education

Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis

Abstract:

In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.

Keywords: Computational Geometry, Education, e-Governance, Semantic Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
795 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
794 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. In this study, we developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, we present an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: Indoor positioning, ultra-wideband, error correction, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534
793 Object Identification with Color, Texture, and Object-Correlation in CBIR System

Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali

Abstract:

Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.

Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
792 A Real Time Collision Avoidance Algorithm for Mobile Robot based on Elastic Force

Authors: Kyung Hyun, Choi, Minh Ngoc, Nong, M. Asif Ali, Rehmani

Abstract:

This present paper proposes the modified Elastic Strip method for mobile robot to avoid obstacles with a real time system in an uncertain environment. The method deals with the problem of robot in driving from an initial position to a target position based on elastic force and potential field force. To avoid the obstacles, the robot has to modify the trajectory based on signal received from the sensor system in the sampling times. It was evident that with the combination of Modification Elastic strip and Pseudomedian filter to process the nonlinear data from sensor uncertainties in the data received from the sensor system can be reduced. The simulations and experiments of these methods were carried out.

Keywords: Collision avoidance, Avoidance obstacle, Elastic Strip, Real time collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
791 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625