Search results for: signal reconstruction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1340

Search results for: signal reconstruction

1040 Sperm Whale Signal Analysis: Comparison using the Auto Regressive model and the Daubechies 15 Wavelets Transform

Authors: Olivier Adam, Maciej Lopatka, Christophe Laplanche, Jean-François Motsch

Abstract:

This article presents the results using a parametric approach and a Wavelet Transform in analysing signals emitting from the sperm whale. The extraction of intrinsic characteristics of these unique signals emitted by marine mammals is still at present a difficult exercise for various reasons: firstly, it concerns non-stationary signals, and secondly, these signals are obstructed by interfering background noise. In this article, we compare the advantages and disadvantages of both methods: Auto Regressive models and Wavelet Transform. These approaches serve as an alternative to the commonly used estimators which are based on the Fourier Transform for which the hypotheses necessary for its application are in certain cases, not sufficiently proven. These modern approaches provide effective results particularly for the periodic tracking of the signal's characteristics and notably when the signal-to-noise ratio negatively effects signal tracking. Our objectives are twofold. Our first goal is to identify the animal through its acoustic signature. This includes recognition of the marine mammal species and ultimately of the individual animal (within the species). The second is much more ambitious and directly involves the intervention of cetologists to study the sounds emitted by marine mammals in an effort to characterize their behaviour. We are working on an approach based on the recordings of marine mammal signals and the findings from this data result from the Wavelet Transform. This article will explore the reasons for using this approach. In addition, thanks to the use of new processors, these algorithms once heavy in calculation time can be integrated in a real-time system.

Keywords: Autoregressive model, Daubechies Wavelet, Fourier Transform, marine mammals, signal processing, spectrogram, sperm whale, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
1039 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1038 A Chaotic Study on Tremor Behavior of Parkinsonian Patients under Deep Brain Stimulation

Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi

Abstract:

Deep Brain Stimulation or DBS is a surgical treatment for Parkinson-s Disease with three stimulation parameters: frequency, pulse width, and voltage. The parameters should be selected appropriately to achieve effective treatment. This selection now, performs clinically. The aim of this research is to study chaotic behavior of recorded tremor of patients under DBS in order to present a computational method to recognize stimulation optimum voltage. We obtained some chaotic features of tremor signal, and discovered embedding space of it has an attractor, and its largest Lyapunov exponent is positive, which show tremor signal has chaotic behavior, also we found out, in optimal voltage, entropy and embedding space variance of tremor signal have minimum values in comparison with other voltages. These differences can help neurologists recognize optimal voltage numerically, which leads to reduce patients' role and discomfort in optimizing stimulation parameters and to do treatment with high accuracy.

Keywords: Chaos, Deep Brain Stimulation, Parkinson's Disease, Stimulation Parameters, tremor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1037 Study of Water on the Surface of Nano-Silica Material: An NMR Study

Authors: J. Hassan

Abstract:

Water 2H NMR signal on the surface of nano-silica material, MCM-41, consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Chemical exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point for study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.

Keywords: Nano-Silica, surface water, NMR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1036 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising

Authors: Jianwei Ma, Diriba Gemechu

Abstract:

In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.

Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
1035 An Improved Quality Adaptive Rate Filtering Technique Based on the Level Crossing Sampling

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

Mostly the systems are dealing with time varying signals. The Power efficiency can be achieved by adapting the system activity according to the input signal variations. In this context an adaptive rate filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by following the input signal local variations. Thus, it correlates the processing activity with the signal variations. Interpolation is required in the proposed technique. A drastic reduction in the interpolation error is achieved by employing the symmetry during the interpolation process. Processing error of the proposed technique is calculated. The computational complexity of the proposed filtering technique is deduced and compared to the classical one. Results promise a significant gain of the computational efficiency and hence of the power consumption.

Keywords: Level Crossing Sampling, Activity Selection, Rate Filtering, Computational Complexity, Interpolation Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1034 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyze the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: Rapid Prototyping, Selective Laser Sintering, Cranial defect, Dimensional Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3362
1033 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.

Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323
1032 Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)

Authors: Yacine Ait Ali Yahia, Abderazak Guessoum

Abstract:

In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.

Keywords: Edge detection, parametrable recursive filter, autocorrelation structure, distortion measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
1031 Poincaré Plot for Heart Rate Variability

Authors: Mazhar B. Tayel, Eslam I. AlSaba

Abstract:

Heart is the most important part in the body of living organisms. It affects and is affected by any factor in the body. Therefore, it is a good detector for all conditions in the body. Heart signal is a non-stationary signal; thus, it is utmost important to study the variability of heart signal. The Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and has become important dependent measure in psychophysiology and behavioral medicine. The standards of measurements, physiological interpretation and clinical use for HRV that are most often used were described in many researcher papers, however, remain complex issues are fraught with pitfalls. This paper presents one of the nonlinear techniques to analyze HRV. It discusses many points like, what Poincaré plot is and how Poincaré plot works; also, Poincaré plot's merits especially in HRV. Besides, it discusses the limitation of Poincaré cause of standard deviation SD1, SD2 and how to overcome this limitation by using complex correlation measure (CCM). The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared toSD1 and SD2.

Keywords: Heart rate variability, chaotic system, Poincaré, variance, standard deviation, complex correlation measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7453
1030 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: Spacecraft control, quantized control, nonlinear control, random dither method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
1029 Characterization of Extreme Low-Resolution Digital Encoder for Control System with Sinusoidal Reference Signal

Authors: Zhenyu Zhang, Qingbin Gao

Abstract:

Low-resolution digital encoder (LRDE) is commonly adopted as a position sensor in low-cost and resource-constraint applications. Traditionally, a digital encoder is modeled as a quantizer without considering the initial position of the LRDE. However, it cannot be applied to extreme LRDE for which stroke of angular motion is only a few times of resolution of the encoder. Besides, the actual angular motion is substantially distorted by this extreme LRDE so that the encoder reading does not faithfully represent the actual angular motion. This paper presents a modeling method for extreme LRDE by taking into account the initial position of the LRDE. For a control system with sinusoidal reference signal and extreme LRDE, this paper analyzes the characteristics of angular motion. Specifically, two descriptors of sinusoidal angular motion are studied, which essentially sheds light on the actual angular motion from extreme LRDE.

Keywords: Low resolution digital encoder, resource-constraint control system, sinusoidal reference signal, servo motion control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
1028 Optimum Signal-to-noise Ratio Performance of Electron Multiplying Charge Coupled Devices

Authors: Wen W. Zhang, Qian Chen

Abstract:

Electron multiplying charge coupled devices (EMCCDs) have revolutionized the world of low light imaging by introducing on-chip multiplication gain based on the impact ionization effect in the silicon. They combine the sub-electron readout noise with high frame rates. Signal-to-noise Ratio (SNR) is an important performance parameter for low-light-level imaging systems. This work investigates the SNR performance of an EMCCD operated in Non-inverted Mode (NIMO) and Inverted Mode (IMO). The theory of noise characteristics and operation modes is presented. The results show that the SNR of is determined by dark current and clock induced charge at high gain level. The optimum SNR performance is provided by an EMCCD operated in NIMO in short exposure and strong cooling applications. In contrast, an IMO EMCCD is preferable.

Keywords: electron multiplying charge coupled devices, noise characteristics, operation modes, signal-to-noise ratioperformance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
1027 Acoustic Detection of the Red Date Palm Weevil

Authors: Mohammed A. Al-Manie, Mohammed I. Alkanhal

Abstract:

In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

Keywords: Acoustic emissions, acoustic sensors, nondestructivetests, Red Date Palm Weevil, signal processing..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
1026 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy

Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang

Abstract:

The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.

Keywords: Cross-validation support vector machine, refined composite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
1025 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
1024 Kalman Filter Based Adaptive Reduction of Motion Artifact from Photoplethysmographic Signal

Authors: S. Seyedtabaii, L. Seyedtabaii

Abstract:

Artifact free photoplethysmographic (PPG) signals are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of Sp02. This paper presents a study on using Kalman Filter in an innovative way by modeling both the Artillery Blood Pressure (ABP) and the unwanted signal, additive motion artifact, to reduce motion artifacts from corrupted PPG signals. Simulation results show acceptable performance regarding LMS and variable step LMS, thus establishing the efficacy of the proposed method.

Keywords: Kalman filter, Motion artifact, PPG, Photoplethysmography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4261
1023 Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique

Authors: Einalou Z., Najafi Z., Maghooli K. Zandi Y, Sheibeigi A

Abstract:

In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.

Keywords: Cepstrum, databank, digestive disease, acousticsignal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1022 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modeling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modeling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modeling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: Content analysis, factors, integrated waste management system, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1021 Design of Auto Exposure Unit Based On 2-Way Histogram Equalization

Authors: Junghwan Choi, Seongsoo Lee

Abstract:

Histogram equalization is often used in image enhancement, but it can be also used in auto exposure. However, conventional histogram equalization does not work well when many pixels are concentrated in a narrow luminance range.This paper proposes an auto exposure method based on 2-way histogram equalization. Two cumulative distribution functions are used, where one is from dark to bright and the other is from bright to dark. In this paper, the proposed auto exposure method is also designed and implemented for image signal processors with full-HD images.

Keywords: Histogram equalization, Auto exposure, Image signal processor, Low-cost, Full HD Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3397
1020 Direct and Indirect Somatic Embryogenesis from Petiole and Leaf Explants of Purple Fan Flower (Scaevola aemula R. Br. cv. 'Purple Fanfare')

Authors: Shyama Ranjani Weerakoon

Abstract:

Direct and indirect somatic embryogenesis (SE) from petiole and leaf explants of Scaevola aemula R. Br. cv. 'Purple Fanfare' was achieved. High frequency of somatic embryos was obtained directly from petiole and leaf explants using an inductive plant growth regulator signal thidiazuron (TDZ). Petiole explants were more responsive to SE than leaves. Plants derived from somatic embryos of petiole explants germinated more readily into plants. SE occurred more efficiently in half-strength Murashige and Skoog (MS) medium than in full-strength MS medium. Non-embryogenic callus induced by 2, 4-dichlorophenoxyacetic acid was used to investigate the feasibility of obtaining SE with TDZ as a secondary inductive plant growth regulator (PGR) signal. Non-embryogenic callus of S. aemula was able to convert into an “embryogenic competent mode" with PGR signal. Protocol developed for induction of direct and indirect somatic embryogenesis in S. aemula can improve the large scale propagation system of the plant in future.

Keywords: Petiole and leaf explants, Scaevola aemula, Somaticembryogenesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
1019 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images

Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin

Abstract:

Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.

Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1018 Digital Automatic Gain Control Integrated on WLAN Platform

Authors: Emilija Miletic, Milos Krstic, Maxim Piz, Michael Methfessel

Abstract:

In this work we present a solution for DAGC (Digital Automatic Gain Control) in WLAN receivers compatible to IEEE 802.11a/g standard. Those standards define communication in 5/2.4 GHz band using Orthogonal Frequency Division Multiplexing OFDM modulation scheme. WLAN Transceiver that we have used enables gain control over Low Noise Amplifier (LNA) and a Variable Gain Amplifier (VGA). The control over those signals is performed in our digital baseband processor using dedicated hardware block DAGC. DAGC in this process is used to automatically control the VGA and LNA in order to achieve better signal-to-noise ratio, decrease FER (Frame Error Rate) and hold the average power of the baseband signal close to the desired set point. DAGC function in baseband processor is done in few steps: measuring power levels of baseband samples of an RF signal,accumulating the differences between the measured power level and actual gain setting, adjusting a gain factor of the accumulation, and applying the adjusted gain factor the baseband values. Based on the measurement results of RSSI signal dependence to input power we have concluded that this digital AGC can be implemented applying the simple linearization of the RSSI. This solution is very simple but also effective and reduces complexity and power consumption of the DAGC. This DAGC is implemented and tested both in FPGA and in ASIC as a part of our WLAN baseband processor. Finally, we have integrated this circuit in a compact WLAN PCMCIA board based on MAC and baseband ASIC chips designed from us.

Keywords: WLAN, AGC, RSSI, baseband processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3949
1017 PAPR Reduction Method for OFDM Signalby Using Dummy Sub-carriers

Authors: Pisit Boonsrimuang, Arjin Numsomran, Tawil Paungma, Hideo Kobayashi

Abstract:

One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) in its time domain signal. The larger PAPR signal would course the fatal degradation of bit error rate performance (BER) due to the inter-modulation noise in the nonlinear channel. This paper proposes an improved DSI (Dummy Sequence Insertion) method, which can achieve the better PAPR and BER performances. The feature of proposed method is to optimize the phase of each dummy sub-carrier so as to reduce the PAPR performance by changing all predetermined phase coefficients in the time domain signal, which is calculated for data sub-carriers and dummy sub-carriers separately. To achieve the better PAPR performance, this paper also proposes to employ the time-frequency domain swapping algorithm for fine adjustment of phase coefficient of the dummy subcarriers, which can achieve the less complexity of processing and achieves the better PAPR and BER performances than those for the conventional DSI method. This paper presents various computer simulation results to verify the effectiveness of proposed method as comparing with the conventional methods in the non-linear channel.

Keywords: OFDM, PAPR, dummy sub-carriers, non-linear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
1016 Performance Analysis of Digital Signal Processors Using SMV Benchmark

Authors: Erh-Wen Hu, Cyril S. Ku, Andrew T. Russo, Bogong Su, Jian Wang

Abstract:

Unlike general-purpose processors, digital signal processors (DSP processors) are strongly application-dependent. To meet the needs for diverse applications, a wide variety of DSP processors based on different architectures ranging from the traditional to VLIW have been introduced to the market over the years. The functionality, performance, and cost of these processors vary over a wide range. In order to select a processor that meets the design criteria for an application, processor performance is usually the major concern for digital signal processing (DSP) application developers. Performance data are also essential for the designers of DSP processors to improve their design. Consequently, several DSP performance benchmarks have been proposed over the past decade or so. However, none of these benchmarks seem to have included recent new DSP applications. In this paper, we use a new benchmark that we recently developed to compare the performance of popular DSP processors from Texas Instruments and StarCore. The new benchmark is based on the Selectable Mode Vocoder (SMV), a speech-coding program from the recent third generation (3G) wireless voice applications. All benchmark kernels are compiled by the compilers of the respective DSP processors and run on their simulators. Weighted arithmetic mean of clock cycles and arithmetic mean of code size are used to compare the performance of five DSP processors. In addition, we studied how the performance of a processor is affected by code structure, features of processor architecture and optimization of compiler. The extensive experimental data gathered, analyzed, and presented in this paper should be helpful for DSP processor and compiler designers to meet their specific design goals.

Keywords: digital signal processors, DSP benchmark, instruction level parallelism, modified cyclomatic complexity, performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
1015 A 1.5V,100MS/s,12-bit Current-Mode CMOSS ample-and-Hold Circuit

Authors: O. Hashemipour, S. G. Nabavi

Abstract:

A high-linearity and high-speed current-mode sampleand- hold circuit is designed and simulated using a 0.25μm CMOS technology. This circuit design is based on low voltage and it utilizes a fully differential circuit. Due to the use of only two switches the switch related noise has been reduced. Signal - dependent -error is completely eliminated by a new zero voltage switching technique. The circuit has a linearity error equal to ±0.05μa, i.e. 12-bit accuracy with a ±160 μa differential output - input signal frequency of 5MHZ, and sampling frequency of 100 MHZ. Third harmonic is equal to –78dB.

Keywords: Zero-voltage-technique, MOS-resistor, OTA, Feedback-resistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
1014 Comparative Study of QRS Complex Detection in ECG

Authors: Ibtihel Nouira, Asma Ben Abdallah, Ibtissem Kouaja, Mohamed Hèdi Bedoui

Abstract:

The processing of the electrocardiogram (ECG) signal consists essentially in the detection of the characteristic points of signal which are an important tool in the diagnosis of heart diseases. The most suitable are the detection of R waves. In this paper, we present various mathematical tools used for filtering ECG using digital filtering and Discreet Wavelet Transform (DWT) filtering. In addition, this paper will include two main R peak detection methods by applying a windowing process: The first method is based on calculations derived, the second is a time-frequency method based on Dyadic Wavelet Transform DyWT.

Keywords: Derived calculation methods, Electrocardiogram, R peaks, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
1013 Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language

Authors: Khalid A. Darabkh, Ala F. Khalifeh, Baraa A. Bathech, Saed W. Sabah

Abstract:

Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.

Keywords: Arabic speech recognition, MFCC, DTW, VAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4075
1012 Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis

Authors: Prasanta Kundu, N.K. Kishore, A.K. Sinha

Abstract:

Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UHF). Being non invasive and non interference prone, acoustic emission technique is advantageous for online PD measurement. Acoustic detection of p.d. is based on the retrieval and analysis of mechanical or pressure signals produced by partial discharges. Partial discharges are classified according to the origin of discharges. Their effects on insulation deterioration are different for different types. This paper reports experimental results and analysis for classification of partial discharges using acoustic emission signal of laboratory simulated partial discharges in oil pressboard insulation system using three different electrode systems. Acoustic emission signal produced by PD are detected by sensors mounted on the experimental tank surface, stored on an oscilloscope and fed to computer for further analysis. The measured AE signals are analyzed using discrete wavelet transform analysis and wavelet packet analysis. Energy distribution in different frequency bands of discrete wavelet decomposed signal and wavelet packet decomposed signal is calculated. These analyses show a distinct feature useful for PD classification. Wavelet packet analysis can sort out any misclassification arising out of DWT in most cases.

Keywords: Acoustic emission, discrete wavelet transform, partial discharge, wavelet packet analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
1011 Recovery of Missing Samples in Multi-channel Oversampling of Multi-banded Signals

Authors: J. M. Kim, K. H. Kwon

Abstract:

We show that in a two-channel sampling series expansion of band-pass signals, any finitely many missing samples can always be recovered via oversampling in a larger band-pass region. We also obtain an analogous result for multi-channel oversampling of harmonic signals.

Keywords: oversampling, multi-channel sampling, recovery of missing samples, band-pass signal, harmonic signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283