Search results for: sensitivity.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 517

Search results for: sensitivity.

217 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

Authors: O. Yavuz, L. Ozyilmaz

Abstract:

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
216 Security Enhanced RFID Middleware System

Authors: Jieun Song, Taesung Kim, Sokjoon Lee, Howon Kim

Abstract:

Recently, the RFID (Radio Frequency Identification) technology attracts the world market attention as essential technology for ubiquitous environment. The RFID market has focused on transponders and reader development. But that concern has shifted to RFID software like as high-valued e-business applications, RFID middleware and related development tools. However, due to the high sensitivity of data and service transaction within the RFID network, security consideration must be addressed. In order to guarantee trusted e-business based on RFID technology, we propose a security enhanced RFID middleware system. Our proposal is compliant with EPCglobal ALE (Application Level Events), which is standard interface for middleware and its clients. We show how to provide strengthened security and trust by protecting transported data between middleware and its client, and stored data in middleware. Moreover, we achieve the identification and service access control against illegal service abuse. Our system enables secure RFID middleware service and trusted e-business service.

Keywords: RFID Middleware, ALE (Application Level Events), Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
215 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete

Authors: M. Eckert, M. Oliveira

Abstract:

The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.

Keywords: Recycled Aggregate, Plastic Shrinkage Cracking; Wind Tunnel, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
214 Langmuir–Blodgett Films of Polyaniline for Efficient Detection of Uric Acid

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Langmuir–Blodgett (LB) films of polyaniline (PANI) grown onto ITO coated glass substrates were utilized for the fabrication of Uric acid biosensor for efficient detection of uric acid by immobilizing Uricase via EDC–NHS coupling. The modified electrodes were characterized by atomic force microscopy (AFM). The response characteristics after immobilization of uricase were studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The uricase/PANI/ITO/glass bioelectrode studied by CV and EIS techniques revealed detection of uric acid in a wide range of 0.05 mM to 1.0 mM, covering the physiological range in blood. A low Michaelis–Menten constant (Km) of 0.21 mM indicates the higher affinity of immobilized Uricase towards its analyte (uric acid). The fabricated uric acid biosensor based on PANI LB films exhibits excellent sensitivity of 0.21 mA/mM with a response time of 4 s, good reproducibility, long shelf life (8 weeks) and high selectivity.

Keywords: Uric acid; biosensor, PANI, Langmuir Blodgett films deposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
213 Deviations and Defects of the Sub-Task’s Requirements in Construction Projects

Authors: Abdullah Almusharraf, Andrew Whyte

Abstract:

The sub-task pattern in terms of deviations and defects should be identified and understood in order to improve the quality of practices in construction projects. Therefore, sub-task susceptibility to exposure to deviations and defects has been evaluated and classified via six classifications proposed in this study. Thirty-four case studies of specific sub-tasks (from compression members in constructed concrete structures) were collected from seven construction projects in order to examine the study’s proposed classifications. The study revealed that the sub-task has a high sensitivity to deviation, where 91% of the cases were recorded as deviations; however, only 19% of cases were recorded as defects. Other findings were that the actual work during the execution process is a high source of deviation for this sub-task (74%), while only 26% of the source of deviation was due to both design documentation and the actual work. These findings significantly imply that the study’s proposed classifications could be used to determine the pattern of each sub-task and develop proactive actions to overcome issues of sub-task deviations and defects.

Keywords: Sub-tasks, deviations, defects, quality, construction projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
212 Project Selection Using Fuzzy Group Analytic Network Process

Authors: Hamed Rafiei, Masoud Rabbani

Abstract:

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

Keywords: Analytic network process, Fuzzy sets theory, Nonlinear programming, Project selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
211 Evaluating Factors Affecting Audiologists’ Diagnostic Performance in Auditory Brainstem Response Reading: Training and Experience

Authors: M. Zaitoun, S. Cumming, A. Purcell

Abstract:

This study aims to determine if audiologists' experience characteristics in ABR (Auditory Brainstem Response) reading is associated with their performance in interpreting ABR results. Fifteen ABR traces with varying degrees of hearing level were presented twice, making a total of 30. Audiologists were asked to determine the hearing threshold for each of the cases after completing a brief survey regarding their experience and training in ABR administration. Sixty-one audiologists completed all tasks. Correlations between audiologists’ performance measures and experience variables suggested significant associations (p < 0.05) between training period in ABR testing and audiologists’ performance in terms of both sensitivity and accuracy. In addition, the number of years conducting ABR testing correlated with specificity. No other correlations approached significance. While there are relatively few significant correlations between ABR performance and experience, accuracy in ABR reading is associated with audiologists’ length of experience and period of training. To improve audiologists’ performance in reading ABR results, an emphasis on the importance of training should be raised and standardized levels and period for audiologists training in ABR testing should also be set.

Keywords: ABR, audiology, performance, training, experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
210 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings

Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani

Abstract:

The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.

Keywords: Direct method, finite element method, foundation, R/C frame, soil-structure interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
209 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
208 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.

Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 320
207 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco

Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed

Abstract:

Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.

Keywords: Mammography, image quality, breast dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
206 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
205 Prioritizing Service Quality Dimensions:A Neural Network Approach

Authors: A. Golmohammadi, B. Jahandideh

Abstract:

One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue –despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.

Keywords: service quality, customer satisfaction, relativeimportance, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
204 Information Gain Ratio Based Clustering for Investigation of Environmental Parameters Effects on Human Mental Performance

Authors: H. Mehdi, Kh. S. Karimov, A. A. Kavokin

Abstract:

Methods of clustering which were developed in the data mining theory can be successfully applied to the investigation of different kinds of dependencies between the conditions of environment and human activities. It is known, that environmental parameters such as temperature, relative humidity, atmospheric pressure and illumination have significant effects on the human mental performance. To investigate these parameters effect, data mining technique of clustering using entropy and Information Gain Ratio (IGR) K(Y/X) = (H(X)–H(Y/X))/H(Y) is used, where H(Y)=-ΣPi ln(Pi). This technique allows adjusting the boundaries of clusters. It is shown that the information gain ratio (IGR) grows monotonically and simultaneously with degree of connectivity between two variables. This approach has some preferences if compared, for example, with correlation analysis due to relatively smaller sensitivity to shape of functional dependencies. Variant of an algorithm to implement the proposed method with some analysis of above problem of environmental effects is also presented. It was shown that proposed method converges with finite number of steps.

Keywords: Clustering, Correlation analysis, EnvironmentalParameters, Information Gain Ratio, Mental Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
203 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening

Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu

Abstract:

Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups.  This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.

Keywords: Breast Cancer Screening, Radiology, Thermalytix, Artificial Intelligence, Thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
202 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
201 Search for Flavour Changing Neutral Current Couplings of Higgs-up Sector Quarks at Future Circular Collider (FCC-eh)

Authors: I. Turk Cakir, B. Hacisahinoglu, S. Kartal, A. Yilmaz, A. Yilmaz, Z. Uysal, O. Cakir

Abstract:

In the search for new physics beyond the Standard Model, Flavour Changing Neutral Current (FCNC) is a good research field in terms of the observability at future colliders. Increased Higgs production with higher energy and luminosity in colliders is essential for verification or falsification of our knowledge of physics and predictions, and the search for new physics. Prospective electron-proton collider constituent of the Future Circular Collider project is FCC-eh. It offers great sensitivity due to its high luminosity and low interference. In this work, thq FCNC interaction vertex with off-shell top quark decay at electron-proton colliders is studied. By using MadGraph5_aMC@NLO multi-purpose event generator, observability of tuh and tch couplings are obtained with equal coupling scenario. Upper limit on branching ratio of tree level top quark FCNC decay is determined as 0.012% at FCC-eh with 1 ab ^−1 luminosity.

Keywords: FCC, FCNC, Higgs Boson, Top Quark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
200 Coastal Ecological Sensitivity and Risk Assessment: A Case Study of Sea Level Change in Apodi River (Atlantic Ocean), Northeast Brazil

Authors: Mukesh Singh Boori, Venerando Eustáquio Amaro, Helenice Vital

Abstract:

The present study has been carried out with a view to calculate the coastal vulnerability index (CVI) to know the high and low sensitive areas and area of inundation due to future SLR. Both conventional and remotely sensed data were used and analyzed through the modelling technique. Out of the total study area, 8.26% is very high risk, 14.21% high, 9.36% medium, 22.46% low and 7.35% in the very low vulnerable category, due to costal components. Results of the inundation analysis indicate that 225.2 km² and 397 km² of the land area will be submerged by flooding at 1m and 10m inundation levels. The most severely affected sectors are expected to be the residential, industrial and recreational areas. As this coast is planned for future coastal developmental activities, measures such as industrializations, building regulation, urban growth planning and agriculture, development of an integrated coastal zone management, strict enforcement of the Coastal Regulation Zone (CRZ) Act, monitoring of impacts and further research in this regard are recommended for the study area.

Keywords: Coastal planning, land use, satellite data, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
199 An EOQ Model for Non-Instantaneous Deteriorating Items with Power Demand, Time Dependent Holding Cost, Partial Backlogging and Permissible Delay in Payments

Authors: M. Palanivel, R. Uthayakumar

Abstract:

In this paper, Economic Order Quantity (EOQ) based model for non-instantaneous Weibull distribution deteriorating items with power demand pattern is presented. In this model, the holding cost per unit of the item per unit time is assumed to be an increasing linear function of time spent in storage. Here the retailer is allowed a trade-credit offer by the supplier to buy more items. Also in this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This model aids in minimizing the total inventory cost by finding the optimal time interval and finding the optimal order quantity. The optimal solution of the model is illustrated with the help of numerical examples. Finally sensitivity analysis and graphical representations are given to demonstrate the model.

Keywords: Power demand pattern, Partial backlogging, Time dependent holding cost, Trade credit, Weibull deterioration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
198 Massive Lesions Classification using Features based on Morphological Lesion Differences

Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo

Abstract:

Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.

Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
197 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns

Authors: Hyun-Woo Cho

Abstract:

The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.

Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
196 Prioritizing Service Quality Dimensions: A Neural Network Approach

Authors: A. Golmohammadi, B. Jahandideh

Abstract:

One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.

Keywords: service quality, customer satisfaction, relative importance, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
195 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
194 Techno-Economic Study on the Potential of Dimethyl Ether as a Substitute for LPG

Authors: W. A. Pamungkas, R. B. Setyawati, A. F. Rifai, C. P. Setiawan, A. W. Budiman, Inayati, J. Waluyo, S. H. Pranolo

Abstract:

The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the COVID-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels which aims to substitute LPG. Dimethyl Ether (DME) is an organic compound with the chemical formula CH3OCH3, has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% Internal Rate of Return (IRR), coal has the largest Net Present Value (NPV) of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and payback period of 5.16. The latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are profitableness, low price and abundant resources, but it has high greenhouse gas emission.

Keywords: LPG, DME, coal, biomass, natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280
193 Effects of Urbanization on Land Use/Land Cover and Stream Flow of a Sub-Tropical River Basin of India

Authors: Satyavati Shukla, Lakhan V. Rathod, Mohan V. Khire

Abstract:

Rapid urbanization changes the land use/land cover pattern of a developing region. Due to these land surface changes, stream flow of the rivers also changes. It is important to investigate the factors affecting hydrological characteristics of the river basin for better river basin management planning. This study is aimed to understand the effect of Land Use/Land Cover (LU/LC) changes on stream flow of Upper Bhima River basin which is highly stressed in terms of water resources. In this study, Upper Bhima River basin is divided into two adjacent sub-watersheds: Mula-Mutha (urbanized) sub-watershed and Bhima (non-urbanized) sub-watershed. First of all, LU/LC changes were estimated over 1980, 2002, and 2009 for both Mula-Mutha and Bhima sub-watersheds. Further, stream flow simulations were done using Soil and Water Assessment Tool (SWAT) for the streams draining both watersheds. Results revealed that stream flow was relatively higher for urbanized sub-watershed. Through Sensitivity Analysis it was observed that out of all the parameters used, base flow was the most sensitive parameter towards LU/LC changes.

Keywords: Land Use/Land Cover, remote sensing, stream flow, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
192 Power Reduction by Automatic Monitoring and Control System in Active Mode

Authors: Somaye Abdollahi Pour, Mohsen Saneei

Abstract:

This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.

Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
191 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
190 Early Onset Neonatal Sepsis Pathogens in Malaysian Hospitals: Determining Empiric Antibiotic

Authors: Nazedah Ain Ibrahim, Mohamed Mansor Manan

Abstract:

Information regarding early onset neonatal sepsis (EONS) pathogens may vary between regions. Global perspectives showed Group B Streptococcal (GBS) as the most common causative pathogens, but the widespread use of intrapartum antibiotics has changed the pathogens pattern towards gram negative microorganisms, especially E. coli. Objective of this study is to describe the pathogens isolated, to assess current treatment and risk of EONS. Records of 899 neonates born in three General Hospitals between 2009 until 2012 were retrospectively reviewed. Proven was found in 22 (3%) neonates. The majority was isolated with gram positive organisms, 17 (2.3%). All grams positive and most gram negative organisms showed sensitivity to the tested antibiotics. Only two rare gram negative organisms showed total resistant. Male was possible risk of proven EONS. Although proven EONS remains uncommon in Malaysia, nonetheless, the effect of intrapartum antibiotics still required continuous surveillance.

Keywords: Early onset neonatal sepsis, neonates, pathogens, gram positive, gram negative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051
189 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of  Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
188 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694