Search results for: data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7585

Search results for: data mining

7285 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342
7284 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek

Abstract:

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
7283 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: Early Warning System, Knowledge Management, Topic Modeling, Market Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
7282 Discovery of Sequential Patterns Based On Constraint Patterns

Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara

Abstract:

This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.

Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
7281 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: Coal mine, risk, soil, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
7280 The Power of Indigenous Peoples in Decision-Making Processes of Mining Projects: The Pilbara Region

Authors: K. N. Penna, J. P. English

Abstract:

The destruction of the Juukan Gorge rock shelters in 2020 has catalysed impetus within Australian society for a significant change in engagement with Indigenous Peoples, and the approach to Indigenous cultural heritage, both within the Pilbara region and more broadly across Australia. Culture-based and people-centred approaches are inherent to inclusive sustainable development and Free, Prior, Informed Consent, outcomes encouraged by international and local recommendations on the human rights and cultural heritage preservation of Indigenous peoples. In this paper, we present an interpretive model of an evolved process for mining project development, incorporating culture-based and people-centred approaches, based on the Theory U system change method. The evolved process advocates a change in organisational mindset and culture, and a comprehensive understanding of Indigenous Peoples’ culture and values, as the foundations for increasing their influence and achieving mutually beneficial developments.

Keywords: Indigenous Engagement, mining industry, culture-based approach, people-centred approach, Theory U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440
7279 Growing Self Organising Map Based Exploratory Analysis of Text Data

Authors: Sumith Matharage, Damminda Alahakoon

Abstract:

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
7278 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
7277 An Attribute-Centre Based Decision Tree Classification Algorithm

Authors: Gökhan Silahtaroğlu

Abstract:

Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.

Keywords: Classification, decision tree, split, pruning, entropy, gini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
7276 Combining Bagging and Boosting

Authors: S. B. Kotsiantis, P. E. Pintelas

Abstract:

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.

Keywords: data mining, machine learning, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
7275 Comparative Study of Universities’ Web Structure Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

This paper is meant to analyze the ranking of University of Malaysia Terengganu, UMT’s website in the World Wide Web. There are only few researches have been done on comparing the ranking of universities’ websites so this research will be able to determine whether the existing UMT’s website is serving its purpose which is to introduce UMT to the world. The ranking is based on hub and authority values which are accordance to the structure of the website. These values are computed using two websearching algorithms, HITS and SALSA. Three other universities’ websites are used as the benchmarks which are UM, Harvard and Stanford. The result is clearly showing that more work has to be done on the existing UMT’s website where important pages according to the benchmarks, do not exist in UMT’s pages. The ranking of UMT’s website will act as a guideline for the web-developer to develop a more efficient website.

Keywords: Algorithm, ranking, website, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
7274 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
7273 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.

Keywords: Clustering, Data analysis, Data mining, Predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
7272 Operational risks Classification for Information Systems with Service-Oriented Architecture (Including Loss Calculation Example)

Authors: Irina Pyrlina

Abstract:

This article presents the results of a study conducted to identify operational risks for information systems (IS) with service-oriented architecture (SOA). Analysis of current approaches to risk and system error classifications revealed that the system error classes were never used for SOA risk estimation. Additionally system error classes are not normallyexperimentally supported with realenterprise error data. Through the study several categories of various existing error classifications systems are applied and three new error categories with sub-categories are identified. As a part of operational risks a new error classification scheme is proposed for SOA applications. It is based on errors of real information systems which are service providers for application with service-oriented architecture. The proposed classification approach has been used to classify SOA system errors for two different enterprises (oil and gas industry, metal and mining industry). In addition we have conducted a research to identify possible losses from operational risks.

Keywords: Enterprise architecture, Error classification, Oil&Gas and Metal&Mining industries, Operational risks, Serviceoriented architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
7271 Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm

Authors: Chen Wu, Jingyu Yang

Abstract:

Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.

Keywords: rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
7270 Plant Varieties Selection System

Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh

Abstract:

In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.

Keywords: Plant varieties selection system, decision tree, expert recommendation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
7269 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
7268 Finding an Optimized Discriminate Function for Internet Application Recognition

Authors: E. Khorram, S.M. Mirzababaei

Abstract:

Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
7267 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: Data mining, digital libraries, digital preservation, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
7266 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: Farooq A. Al-Sheikh, Carol Moralejo, Mark Pritzker, William A. Anderson, Ali Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, LEWATIT resin, models, regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
7265 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
7264 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
7263 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints

Authors: Safa Adi

Abstract:

This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.

Keywords: Database, GTC algorithm, PSP algorithm, sequential patterns, time constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
7262 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
7261 Response of the Residential Building Structureon Load Technical Seismicity due to Mining Activities

Authors: V. Salajka, Z. Kaláb, J. Kala, P. Hradil

Abstract:

In the territories where high-intensity earthquakes are frequent is paid attention to the solving of the seismic problems. In the paper are described two computational model variants based on finite element method of the construction with different subsoil simulation (rigid or elastic subsoil) is used. For simulation and calculations program system based on method final elements ANSYS was used. Seismic responses calculations of residential building structure were effected on loading characterized by accelerogram for comparing with the responses spectra method.

Keywords: Accelerogram, ANSYS, mining induced seismic, residential building structure, spectra, subsoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
7260 Network Anomaly Detection using Soft Computing

Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee

Abstract:

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
7259 Improving Classification in Bayesian Networks using Structural Learning

Authors: Hong Choon Ong

Abstract:

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
7258 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
7257 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data

Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.

Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
7256 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining

Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail

Abstract:

Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.

Keywords: Composite material, ground improvement, mining legacy, resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541