Search results for: Spatial data mining.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8012

Search results for: Spatial data mining.

7712 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
7711 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
7710 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.

Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3545
7709 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India

Authors: Sujata Upgupta, Prasoon Kumar Singh

Abstract:

The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.

Keywords: Coal mining, forest, indicators, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
7708 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
7707 Text-Mining Approach for Evaluation of Affective Management Practices

Authors: Masaaki Saito, Qin Tang, Hiroyuki Umemuro

Abstract:

The purpose of this paper is to propose a text mining approach to evaluate companies- practices on affective management. Affective management argues that it is critical to take stakeholders- affects into consideration during decision-making process, along with the traditional numerical and rational indices. CSR reports published by companies were collected as source information. Indices were proposed based on the frequency and collocation of words relevant to affective management concept using text mining approach to analyze the text information of CSR reports. In addition, the relationships between the results obtained using proposed indices and traditional indicators of business performance were investigated using correlation analysis. Those correlations were also compared between manufacturing and non-manufacturing companies. The results of this study revealed the possibility to evaluate affective management practices of companies based on publicly available text documents.

Keywords: Affective management, Affect, Stakeholder, Text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7706 A Semantic Recommendation Procedure for Electronic Product Catalog

Authors: Hadi Khosravi Farsani, Mohammadali Nematbakhsh

Abstract:

To overcome the product overload of Internet shoppers, we introduce a semantic recommendation procedure which is more efficient when applied to Internet shopping malls. The suggested procedure recommends the semantic products to the customers and is originally based on Web usage mining, product classification, association rule mining, and frequently purchasing. We applied the procedure to the data set of MovieLens Company for performance evaluation, and some experimental results are provided. The experimental results have shown superior performance in terms of coverage and precision.

Keywords: Personalization, Recommendation, OWL Ontology, Electronic Catalogs, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
7705 Automata Theory Approach for Solving Frequent Pattern Discovery Problems

Authors: Renáta Iváncsy, István Vajk

Abstract:

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
7704 Hybrid Intelligent Intrusion Detection System

Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed

Abstract:

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
7703 An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention

Authors: Tae-Heon Moon, Sun-Young Heo, Sang-Ho Lee, Youn-Taik Leem, Kwang-Woo Nam

Abstract:

This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analysis and weighted displacement quotient (WDQ). As study methods, it analyzed existing relevant studies for identifying the trends of CCTV and crime studies based on big data from 1800 to 2014 and understanding the relation between CCTV and crime. Second, it investigated the current situation of nationwide CCTVs and analyzed the guidelines of CCTV installation and operation to draw attention to the problems and indicating points of CCTV use. Third, it investigated the crime occurrence in case areas and the current situation of CCTV installation in the spatial aspects, and analyzed the appropriateness and effectiveness of CCTV installation to suggest a rational installation of CCTV and the strategic direction of crime prevention. The results demonstrate that there was no significant effect in the installation of CCTV on crime prevention in the case area. This indicates that CCTV should be installed and managed in a more scientific way reflecting local crime situations. In terms of CCTV, the methods of spatial analysis such as GIS, which can evaluate the installation effect, and the methods of economic analysis like cost-benefit analysis should be developed. In addition, these methods should be distributed to local governments across the nation for the appropriate installation of CCTV and operation. This study intended to find a design guideline of the optimum CCTV installation. In this regard, this study is meaningful in that it will contribute to the creation of a safe city.

Keywords: CCTV, Safe City, Crime Prevention, Spatial Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
7702 Spatial Distribution of Local Sheep Breeds in Antalya Province

Authors: Serife Gulden Yilmaz, Suleyman Karaman

Abstract:

Sheep breeding is important in terms of meeting both the demand of red meat consumption and the availability of industrial raw materials and the employment of the rural sector in Turkey. It is also very important to ensure the selection and continuity of the breeds that are raised in order to increase quality and productive products related to sheep breeding. The protection of local breeds and crossbreds also enables the development of the sector in the region and the reduction of imports. In this study, the data were obtained from the records of the Turkish Statistical Institute and Antalya Sheep & Goat Breeders' Association. Spatial distribution of sheep breeds in Antalya is reviewed statistically in terms of concentration at the local level for 2015 period spatially. For this reason; mapping, box plot, linear regression are used in this study. Concentration is introduced by means of studbook data on sheep breeding as locals and total sheep farm by mapping. It is observed that Pırlak breed (17.5%) and Merinos crossbreed (16.3%) have the highest concentration in the region. These breeds are respectively followed by Akkaraman breed (11%), Pirlak crossbreed (8%), Merinos breed (7.9%) Akkaraman crossbreed (7.9%) and Ivesi breed (7.2%).

Keywords: Antalya, sheep breeds, spatial distribution, local.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
7701 An Approach to Concerns and Aspects Mining for Web Applications

Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini

Abstract:

Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.

Keywords: Aspect Mining, Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
7700 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups

Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley

Abstract:

Significant long-term investment projects can involve complex decisions. These are often described as capital projects and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives, these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with perception of veracity and validity of the data presented; this impacted the ability of the group to reach consensus and therefore for decision to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.

Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
7699 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review

Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen

Abstract:

The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.

Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
7698 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
7697 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
7696 Main Cause of Children's Deaths in Indigenous Wayuu Community from Department of La Guajira: A Research Developed through Data Mining Use

Authors: Isaura Esther Solano Núñez, David Suarez

Abstract:

The main purpose of this research is to discover what causes death in children of the Wayuu community, and deeply analyze those results in order to take corrective measures to properly control infant mortality. We consider important to determine the reasons that are producing early death in this specific type of population, since they are the most vulnerable to high risk environmental conditions. In this way, the government, through competent authorities, may develop prevention policies and the right measures to avoid an increase of this tragic fact. The methodology used to develop this investigation is data mining, which consists in gaining and examining large amounts of data to produce new and valuable information. Through this technique it has been possible to determine that the child population is dying mostly from malnutrition. In short, this technique has been very useful to develop this study; it has allowed us to transform large amounts of information into a conclusive and important statement, which has made it easier to take appropriate steps to resolve a particular situation.

Keywords: Malnutrition, datamining, analytical, descriptive, population, wayuu, indigenous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
7695 Dose due the Incorporation of Radionuclides Using Teeth as Bioindicators nearby Caetité Uranium Mines

Authors: Viviane S. Guimarães, Ícaro M. M. Brasil, Simara S. Campos, Roseli F. Gennari, Márcia R. P. Attie, Susana O. Souza.

Abstract:

Uranium mining and processing in Brazil occur in a northeastern area near to Caetité-BA. Several Non-Governmental Organizations claim that uranium mining in this region is a pollutant causing health risks to the local population,but those in charge of the complex extraction and production of“yellow cake" for generating fuel to the nuclear power plants reject these allegations. This study aimed at identifying potential problems caused by mining to the population of Caetité. In this, work,the concentrations of 238U, 232Th and 40K radioisotopes in the teeth of the Caetité population were determined by ICP-MS. Teeth are used as bioindicators of incorporated radionuclides. Cumulative radiation doses in the skeleton were also determined. The concentration values were below 0.008 ppm, and annual effective dose due to radioisotopes are below to the reference values. Therefore, it is not possible to state that the mining process in Caetité increases pollution or radiation exposure in a meaningful way.

Keywords: bioindicators, radiation dose, radioisotopesincorporation, uranium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4112
7694 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: Machine learning, Imbalanced data, Data mining, Big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
7693 Spatial Indeterminacy: Destabilization of Dichotomies in Modern and Contemporary Architecture

Authors: Adrian Lo

Abstract:

Since the advent of modern architecture, notions of free plan and transparency have proliferated well into current trends. The movement’s notion of a spatially homogeneous, open and limitless ‘free plan’ contrasts with the spatially heterogeneous ‘series of rooms’ defined by load bearing walls, which in turn triggered new notions of transparency created by vast expanses of glazed walls. Similarly, transparency was also dichotomized as something that was physical or optical, as well as something conceptual, akin to spatial organization. As opposed to merely accepting the duality and possible incompatibility of these dichotomies, this paper seeks to ask how can space be both literally and phenomenally transparent, as well as exhibit both homogeneous and heterogeneous qualities? This paper explores this potential destabilization or blurring of spatial phenomena by dissecting the transparent layers and volumes of a series of selected case studies to investigate how different architects have devised strategies of spatial ambiguity and interpenetration. Projects by Peter Eisenman, Sou Fujimoto, and SANAA will be discussed and analyzed to show how the superimposition of geometries and spaces achieve different conditions of layering, transparency, and interstitiality. Their particular buildings will be explored to reveal various innovative kinds of spatial interpenetration produced through the articulate relations of the elements of architecture, which challenge conventional perceptions of interior and exterior whereby visual homogeneity blurs with spatial heterogeneity. The results show how spatial conceptions such as interpenetration and transparency have the ability to subvert not only inside-outside dialectics, but could also produce multiple degrees of interiority within complex and indeterminate spatial dimensions in constant flux as well as present alternative forms of social interaction.

Keywords: interpenetration, literal and phenomenal transparency, spatial heterogeneity, visual homogeneity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
7692 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121
7691 Rural – Urban Partnership for Balanced Spatial Development in Latvia

Authors: Zane Bulderberga

Abstract:

Spatial dimension in development planning is becoming more topical in 21st century as a result of changes in population structure. Sustainable spatial development focuses on identifying and using territorial advantages to foster the harmonized development of the entire country, reducing negative effects of population concentration, increasing availability and mobility. EU and national development planning documents state polycentrism as main tool for balance spatial development, including investment concentration in growth centres. If mutual cooperation of growth centres as well as urban–rural cooperation is not fostered, then territorial differences can deepen and create unbalanced development.

The aim of research: to evaluate the urban–rural interaction, elaborating spatial development scenarios in framework of Latvian regional policy. To perform the research monographic, comparison, abstract–logical method, synthesis and analysis will be used when studying the theoretical aspects of research aiming at collecting the ideas of scientists from different countries, concepts, regulations as well as to create meaningful scientific discussion. Hierarchy analysis process (AHP) will be used to state further scenarios of spatial development in Latvia.

Experts from various institutions recognized urban – rural interaction and co-operation as an essential tool for the development. The most important factors for balanced spatial development in Latvia are availability of public transportation and improvement of service availability. Evaluating the three alternative scenarios, it was concluded that the urban – rural partnership will ensure a balanced development in Latvian regions.

Keywords: Rural – urban interaction, rural – urban cooperation, spatial development, AHP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
7690 Space-Time Variation in Rainfall and Runoff: Upper Betwa Catchment

Authors: Ritu Ahlawat

Abstract:

Among all geo-hydrological relationships, rainfallrunoff relationship is of utmost importance in any hydrological investigation and water resource planning. Spatial variation, lag time involved in obtaining areal estimates for the basin as a whole can affect the parameterization in design stage as well as in planning stage. In conventional hydrological processing of data, spatial aspect is either ignored or interpolated at sub-basin level. Temporal variation when analysed for different stages can provide clues for its spatial effectiveness. The interplay of space-time variation at pixel level can provide better understanding of basin parameters. Sustenance of design structures for different return periods and their spatial auto-correlations should be studied at different geographical scales for better management and planning of water resources. In order to understand the relative effect of spatio-temporal variation in hydrological data network, a detailed geo-hydrological analysis of Betwa river catchment falling in Lower Yamuna Basin is presented in this paper. Moreover, the exact estimates about the availability of water in the Betwa river catchment, especially in the wake of recent Betwa-Ken linkage project, need thorough scientific investigation for better planning. Therefore, an attempt in this direction is made here to analyse the existing hydrological and meteorological data with the help of SPSS, GIS and MS-EXCEL software. A comparison of spatial and temporal correlations at subcatchment level in case of upper Betwa reaches has been made to demonstrate the representativeness of rain gauges. First, flows at different locations are used to derive correlation and regression coefficients. Then, long-term normal water yield estimates based on pixel-wise regression coefficients of rainfall-runoff relationship have been mapped. The areal values obtained from these maps can definitely improve upon estimates based on point-based extrapolations or areal interpolations.

Keywords: Catchment's runoff estimates, influence area regional regression coefficients, runoff yield series,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
7689 Renewed Urban Waterfront: Spatial Conditions of a Contemporary Urban Space Typology

Authors: Beate Niemann, Fabian Pramel

Abstract:

The formerly industrially or militarily used Urban Waterfront is a potential area for urban development. Extensive interventions in the urban space come along with the development of these previously inaccessible areas in the city. The development of the Urban Waterfront in the European City is not subject to any recognizable urban paradigm. In this study, the development of the Urban Waterfront as a new urban space typology is analyzed by case studies of Urban Waterfront developments in European Cities. For humans, perceptible spatial conditions are categorized and it is identified whether the themed Urban Waterfront Developments are congruent or incongruent urban design interventions and which deviations the Urban Waterfront itself induce. As congruent urban design, a design is understood, which fits in the urban fabric regarding its similar spatial conditions to the surrounding. Incongruent urban design, however, shows significantly different conditions in its shape. Finally, the spatial relationship of the themed Urban Waterfront developments and their associated environment are compared in order to identify contrasts between new and old urban space. In this way, conclusions about urban design paradigms of the new urban space typology are tried to be drawn.

Keywords: Composition, congruence, identity, paradigm, spatial condition, urban design, urban development, urban waterfront.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
7688 Redesigning Business Processes: A Method Based on Simulation and Process Mining Techniques

Authors: Zahra Mohammadnazari, Fateme Rostambeygi, Fatemeh Dehrouyeh, Hwang Ki-Soon, Amir Aghsami

Abstract:

Corporations have always prioritized efforts to examine and improve processes. Various metrics, such as the cost and time required to implement the process and can be specified in this regard. Process improvement can be defined as an improvement of these indicators. This is accomplished by looking at prospective adjustments to the current executive process model or the resources allotted to it. Research has been conducted in this paper to the improve the procurement process and aims to explore assessment prospects in the project using a combination of process mining and simulation (benefiting from Play-In and Play-Out methodologies). To run the simulation, we will need to complete the control flow diagram, institution settings, resource settings, and activity settings. The process of mining event logs yields the process control flow. However, both the entry of institutions and the distribution of resources must be modeled. The rate of admission of institutions and the distribution of time for the implementation of activities will be determined in the next step.

Keywords: Business reengineering, Petri net, process-based simulation, process mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485
7687 Planning the Building Evacuation Routes by a Spatial Network

Authors: Hsin-Yun Lee

Abstract:

The previous proposed evacuation routing approaches usually divide the space into multiple interlinked zones. However, it may be harder to clearly and objectively define the margins of each zone. This paper proposes an approach that connects locations of necessary guidance into a spatial network. In doing so, evacuation routes can be constructed based on the links between starting points, turning nodes, and terminal points. This approach more conforms to the real-life evacuation behavior. The feasibility of the proposed approach is evaluated through a case of one floor in a hospital building. Results indicate that the proposed approach provides valuable suggestions for evacuation planning.

Keywords: Evacuation, spatial network, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
7686 Performance Analysis of a Combined Ordered Successive and Interference Cancellation Using Zero-Forcing Detection over Rayleigh Fading Channels in MIMO Systems

Authors: Jamal R. Elbergali

Abstract:

Multiple Input Multiple Output (MIMO) systems are wireless systems with multiple antenna elements at both ends of the link. Wireless communication systems demand high data rate and spectral efficiency with increased reliability. MIMO systems have been popular techniques to achieve these goals because increased data rate is possible through spatial multiplexing scheme and diversity. Spatial Multiplexing (SM) is used to achieve higher possible throughput than diversity. In this paper, we propose a Zero- Forcing (ZF) detection using a combination of Ordered Successive Interference Cancellation (OSIC) and Zero Forcing using Interference Cancellation (ZF-IC). The proposed method used an OSIC based on Signal to Noise Ratio (SNR) ordering to get the estimation of last symbol, then the estimated last symbol is considered to be an input to the ZF-IC. We analyze the Bit Error Rate (BER) performance of the proposed MIMO system over Rayleigh Fading Channel, using Binary Phase Shift Keying (BPSK) modulation scheme. The results show better performance than the previous methods.

Keywords: SNR, BER, BPSK, MIMO, Modulation, Zero forcing (ZF), OSIC, ZF-IC, Spatial Multiplexing (SM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
7685 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia

Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad

Abstract:

A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.

Keywords: Actiflo® clarifier, membrane, mining wastewater, reverse osmosis, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
7684 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: Data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
7683 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability

Authors: Pradeep Kumar, Abdul Wahid

Abstract:

Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.

Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839