Search results for: Linear interval systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6009

Search results for: Linear interval systems

5709 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework

Authors: Ilaria Lucrezia Amerise

Abstract:

Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.

Keywords: Forecasting problem, interval forecasts, time series, electricity prices, reg-plus-SARMA methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
5708 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
5707 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

Authors: Felix Che Shu

Abstract:

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
5706 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
5705 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: Sallem F., Dahhou B., Kamoun A.

Abstract:

In this work, the main problem considered is the  detection and the isolation of the actuator fault. A new formulation of  the linear system is generated to obtain the conditions of the actuator  fault diagnosis. The proposed method is based on the representation  of the actuator as a subsystem connected with the process system in  cascade manner. The designed formulation is generated to obtain the  conditions of the actuator fault detection and isolation. Detectability  conditions are expressed in terms of the invertibility notions. An  example and a comparative analysis with the classic formulation  illustrate the performances of such approach for simple actuator fault  diagnosis by using the linear model of nuclear reactor.

 

Keywords: Actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
5704 Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

Keywords: Higher order systems, model order formulation, modified particle swarm optimization, PID controller, pole-zero cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5027
5703 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

Authors: Abdu Masanawa Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
5702 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique

Authors: J.V.R.Ravindra, M.B.Srinivas,

Abstract:

Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.

Keywords: Model order Reduction, RLC, crosstalk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
5701 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector

Authors: Dana M. Ragab, Jasim A Ghaeb

Abstract:

The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.

Keywords: Power quality, space vector, unbalance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
5700 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
5699 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel

Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi

Abstract:

A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.

Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
5698 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter

Authors: Kavala Kiran Kumar, R. Govardhana Rao

Abstract:

Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.

Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
5697 Model Order Reduction of Discrete-Time Systems Using Fuzzy C-Means Clustering

Authors: Anirudha Narain, Dinesh Chandra, Ravindra K. S.

Abstract:

A computationally simple approach of model order reduction for single input single output (SISO) and linear timeinvariant discrete systems modeled in frequency domain is proposed in this paper. Denominator of the reduced order model is determined using fuzzy C-means clustering while the numerator parameters are found by matching time moments and Markov parameters of high order system.

Keywords: Model Order reduction, Discrete-time system, Fuzzy C-Means Clustering, Padé approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
5696 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor

Authors: J. Ritonja

Abstract:

The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.

Keywords: Adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
5695 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization

Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata

Abstract:

This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.

Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
5694 Solving Linear Matrix Equations by Matrix Decompositions

Authors: Yongxin Yuan, Kezheng Zuo

Abstract:

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
5693 An Ontology for Knowledge Representation and Applications

Authors: Nhon Do

Abstract:

Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the knowledge system in linear algebra.

Keywords: Artificial intelligence, knowledge representation, knowledge base system, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
5692 An Estimation of Variance Components in Linear Mixed Model

Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian

Abstract:

In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.

Keywords: Linear mixed model, Random effects, Parameter estimation, Stein function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
5691 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: Decentralized, optimal control, output, singular perturb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
5690 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 Aircraft, linear matrix inequalities, pole placement, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
5689 Blind Image Deconvolution by Neural Recursive Function Approximation

Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu

Abstract:

This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.

Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
5688 Algorithmic Method for Efficient Cruise Program

Authors: Pelaez Verdet, Antonio, Loscertales Sanchez, Pilar

Abstract:

One of the mayor problems of programming a cruise circuit is to decide which destinations to include and which don-t. Thus a decision problem emerges, that might be solved using a linear and goal programming approach. The problem becomes more complex if several boats in the fleet must be programmed in a limited schedule, trying their capacity matches best a seasonal demand and also attempting to minimize the operation costs. Moreover, the programmer of the company should consider the time of the passenger as a limited asset, and would like to maximize its usage. The aim of this work is to design a method in which, using linear and goal programming techniques, a model to design circuits for the cruise company decision maker can achieve an optimal solution within the fleet schedule.

Keywords: Itinerary design, cruise programming, goalprogramming, linear programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
5687 Research of Linear Camera Calibration Based on Planar Pattern

Authors: Jin Sun, Hongbin Gu

Abstract:

An important step in three-dimensional reconstruction and computer vision is camera calibration, whose objective is to estimate the intrinsic and extrinsic parameters of each camera. In this paper, two linear methods based on the different planes are given. In both methods, the general plane is used to replace the calibration object with very good precision. In the first method, after controlling the camera to undergo five times- translation movements and taking pictures of the orthogonal planes, a set of linear constraints of the camera intrinsic parameters is then derived by means of homography matrix. The second method is to get all camera parameters by taking only one picture of a given radius circle. experiments on simulated data and real images,indicate that our method is reasonable and is a good supplement to camera calibration.

Keywords: camera calibration, 3D reconstruction, computervision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
5686 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway.

The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
5685 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

Authors: C. Ganesh Babu, P. T. Vanathi

Abstract:

In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
5684 Specifying Strict Serializability of Iterated Transactions in Propositional Temporal Logic

Authors: Walter Hussak

Abstract:

We present an operator for a propositional linear temporal logic over infinite schedules of iterated transactions, which, when applied to a formula, asserts that any schedule satisfying the formula is serializable. The resulting logic is suitable for specifying and verifying consistency properties of concurrent transaction management systems, that can be defined in terms of serializability, as well as other general safety and liveness properties. A strict form of serializability is used requiring that, whenever the read and write steps of a transaction occurrence precede the read and write steps of another transaction occurrence in a schedule, the first transaction must precede the second transaction in an equivalent serial schedule. This work improves on previous work in providing a propositional temporal logic with a serializability operator that is of the same PSPACE complete computational complexity as standard propositional linear temporal logic without a serializability operator.

Keywords: Temporal logic, iterated transactions, serializability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
5683 Application of De Novo Programming Approach for Optimizing the Business Process

Authors: Z. Babic, I. Veza, A. Balic, M. Crnjac

Abstract:

The linear programming model is sometimes difficult to apply in real business situations due to its assumption of proportionality. This paper shows an example of how to use De Novo programming approach instead of linear programming. In the De Novo programming, resources are not fixed like in linear programming but resource quantities depend only on available budget. Budget is a new, important element of the De Novo approach. Two different production situations are presented: increasing costs and quantity discounts of raw materials. The focus of this paper is on advantages of the De Novo approach in the optimization of production plan for production company which produces souvenirs made from famous stone from the island of Brac, one of the greatest islands from Croatia.

Keywords: De Novo Programming, production plan, stone souvenirs, variable prices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
5682 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed

Abstract:

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Keywords: Logistic regression model, Expectationmaximization, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
5681 Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger

Authors: Mohamed Essahafi, Mustapha Ait Lafkih

Abstract:

In industrial environments, the heat exchanger is a necessary component to any strategy of energy conversion. Much of thermal energy used in industrial processes passes at least one times by a heat exchanger, and methods systems recovering thermal energy. This survey paper tries to presents in a systemic way an sample control of a heat exchanger by comparison between three controllers LQR (linear quadratic regulator), PID (proportional, integrator and derivate) and Pole Placement. All of these controllers are used mainly in industrial sectors (chemicals, petrochemicals, steel, food processing, energy production, etc…) of transportation (automotive, aeronautics), but also in the residential sector and tertiary (heating, air conditioning, etc...) The choice of a heat exchanger, for a given application depends on many parameters: field temperature and pressure of fluids, and physical properties of aggressive fluids, maintenance and space. It is clear that the fact of having an exchanger appropriate, well-sized, well made and well used allows gain efficiency and energy processes.

Keywords: LQR linear-quadratic regulator, PID control, Pole Placement, Heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4392
5680 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177