Search results for: Data Centric Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11074

Search results for: Data Centric Approach

10774 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
10773 A Parallel Architecture for the Real Time Correction of Stereoscopic Images

Authors: Zohir Irki, Michel Devy

Abstract:

In this paper, we will present an architecture for the implementation of a real time stereoscopic images correction's approach. This architecture is parallel and makes use of several memory blocs in which are memorized pre calculated data relating to the cameras used for the acquisition of images. The use of reduced images proves to be essential in the proposed approach; the suggested architecture must so be able to carry out the real time reduction of original images.

Keywords: Image reduction, Real-time correction, Parallel architecture, Parallel treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
10772 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups

Authors: Lily Ingsrisawang, Tasanee Nacharoen

Abstract:

The problems arising from unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many researchers have found that the performance of existing classifiers tends to be biased towards the majority class. The k-nearest neighbors’ nonparametric discriminant analysis is a method that was proposed for classifying unbalanced classes with good performance. In this study, the methods of discriminant analysis are of interest in investigating misclassification error rates for classimbalanced data of three diabetes risk groups. The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification of class-imbalanced data of diabetes risk groups. Data from a project maintaining healthy conditions for 599 employees of a government hospital in Bangkok were obtained for the classification problem. The employees were divided into three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data including the variables of diabetes risk group, age, gender, blood glucose, and BMI were analyzed and bootstrapped for 50 and 100 samples, 599 observations per sample, for additional estimation of the misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples showed nonnormality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. Searching the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions of (0.90:0.05:0.05), (0.80: 0.10: 0.10) and (0.70, 0.15, 0.15). The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k=3 or k=4 and the defined prior probabilities of non-risk: risk: diabetic as 0.90: 0.05:0.05 or 0.80:0.10:0.10 gave the smallest error rate of misclassification. The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.

Keywords: Bootstrap, diabetes risk groups, error rate, k-nearest neighbors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
10771 The Performance Analysis of Error Saturation Nonlinearity LMS in Impulsive Noise based on Weighted-Energy Conservation

Authors: T Panigrahi, G Panda, Mulgrew

Abstract:

This paper introduces a new approach for the performance analysis of adaptive filter with error saturation nonlinearity in the presence of impulsive noise. The performance analysis of adaptive filters includes both transient analysis which shows that how fast a filter learns and the steady-state analysis gives how well a filter learns. The recursive expressions for mean-square deviation(MSD) and excess mean-square error(EMSE) are derived based on weighted energy conservation arguments which provide the transient behavior of the adaptive algorithm. The steady-state analysis for co-related input regressor data is analyzed, so this approach leads to a new performance results without restricting the input regression data to be white.

Keywords: Error saturation nonlinearity, transient analysis, impulsive noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
10770 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
10769 An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure

Authors: Fiona Browne, Huiru Zheng, Haiying Wang, Francisco Azuaje

Abstract:

Recent years have seen a growing trend towards the integration of multiple information sources to support large-scale prediction of protein-protein interaction (PPI) networks in model organisms. Despite advances in computational approaches, the combination of multiple “omic" datasets representing the same type of data, e.g. different gene expression datasets, has not been rigorously studied. Furthermore, there is a need to further investigate the inference capability of powerful approaches, such as fullyconnected Bayesian networks, in the context of the prediction of PPI networks. This paper addresses these limitations by proposing a Bayesian approach to integrate multiple datasets, some of which encode the same type of “omic" data to support the identification of PPI networks. The case study reported involved the combination of three gene expression datasets relevant to human heart failure (HF). In comparison with two traditional methods, Naive Bayesian and maximum likelihood ratio approaches, the proposed technique can accurately identify known PPI and can be applied to infer potentially novel interactions.

Keywords: Bayesian network, Classification, Data integration, Protein interaction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
10768 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network

Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley

Abstract:

A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.

Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
10767 Weighted Data Replication Strategy for Data Grid Considering Economic Approach

Authors: N. Mansouri, A. Asadi

Abstract:

Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.

Keywords: Data grid, data replication, simulation, replica selection, replica placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
10766 Measuring Teachers- Beliefs about Mathematics: A Fuzzy Set Approach

Authors: M.A. Lazim, M.T.Abu Osman

Abstract:

This paper deals with the application of a fuzzy set in measuring teachers- beliefs about mathematics. The vagueness of beliefs was transformed into standard mathematical values using a fuzzy preferences model. The study employed a fuzzy approach questionnaire which consists of six attributes for measuring mathematics teachers- beliefs about mathematics. The fuzzy conjoint analysis approach based on fuzzy set theory was used to analyze the data from twenty three mathematics teachers from four secondary schools in Terengganu, Malaysia. Teachers- beliefs were recorded in form of degrees of similarity and its levels of agreement. The attribute 'Drills and practice is one of the best ways of learning mathematics' scored the highest degree of similarity at 0. 79860 with level of 'strongly agree'. The results showed that the teachers- beliefs about mathematics were varied. This is shown by different levels of agreement and degrees of similarity of the measured attributes.

Keywords: belief, membership function, degree of similarity, conjoint analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
10765 Wavelet and K-L Seperability Based Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

This paper proposes a novel feature extraction method, based on Discrete Wavelet Transform (DWT) and K-L Seperability (KLS), for the classification of Functional Data (FD). This method combines the decorrelation and reduction property of DWT and the additive independence property of KLS, which is helpful to extraction classification features of FD. It is an advanced approach of the popular wavelet based shrinkage method for functional data reduction and classification. A theory analysis is given in the paper to prove the consistent convergence property, and a simulation study is also done to compare the proposed method with the former shrinkage ones. The experiment results show that this method has advantages in improving classification efficiency, precision and robustness.

Keywords: classification, functional data, feature extraction, K-Lseperability, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
10764 A Novel Design Approach for Mechatronic Systems Based On Multidisciplinary Design Optimization

Authors: Didier Casner, Jean Renaud, Remy Houssin, Dominique Knittel

Abstract:

In this paper, a novel approach for the multidisciplinary design optimization (MDO) of complex mechatronic systems. This approach, which is a part of a global project aiming to include the MDO aspect inside an innovative design process. As a first step, the paper considers the MDO as a redesign approach which is limited to the parametric optimization. After defining and introducing the different keywords, the proposed method which is based on the V-Model which is commonly used in mechatronics.

Keywords: mechatronics, Multidisciplinary Design Optimization (MDO), multiobjective optimization, engineering design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
10763 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks

Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li

Abstract:

Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.

Keywords: BERT, chatbot, cryptocurrency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
10762 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142
10761 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach

Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick

Abstract:

Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.

Keywords: SPC, MSA, gauge capability, Cg, Cgk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5176
10760 Auto Classification for Search Intelligence

Authors: Lilac A. E. Al-Safadi

Abstract:

This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.

Keywords: Information Processing on the Web, Data Mining, Document Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
10759 Detection of Linkages Between Extreme Flow Measures and Climate Indices

Authors: Mohammed Sharif, Donald Burn

Abstract:

Large scale climate signals and their teleconnections can influence hydro-meteorological variables on a local scale. Several extreme flow and timing measures, including high flow and low flow measures, from 62 hydrometric stations in Canada are investigated to detect possible linkages with several large scale climate indices. The streamflow data used in this study are derived from the Canadian Reference Hydrometric Basin Network and are characterized by relatively pristine and stable land-use conditions with a minimum of 40 years of record. A composite analysis approach was used to identify linkages between extreme flow and timing measures and climate indices. The approach involves determining the 10 highest and 10 lowest values of various climate indices from the data record. Extreme flow and timing measures for each station were examined for the years associated with the 10 largest values and the years associated with the 10 smallest values. In each case, a re-sampling approach was applied to determine if the 10 values of extreme flow measures differed significantly from the series mean. Results indicate that several stations are impacted by the large scale climate indices considered in this study. The results allow the determination of any relationship between stations that exhibit a statistically significant trend and stations for which the extreme measures exhibit a linkage with the climate indices.

Keywords: flood analysis, low-flow events, climate change, trend analysis, Canada

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
10758 Analysis of Web User Identification Methods

Authors: Renáta Iváncsy, Sándor Juhász

Abstract:

Web usage mining has become a popular research area, as a huge amount of data is available online. These data can be used for several purposes, such as web personalization, web structure enhancement, web navigation prediction etc. However, the raw log files are not directly usable; they have to be preprocessed in order to transform them into a suitable format for different data mining tasks. One of the key issues in the preprocessing phase is to identify web users. Identifying users based on web log files is not a straightforward problem, thus various methods have been developed. There are several difficulties that have to be overcome, such as client side caching, changing and shared IP addresses and so on. This paper presents three different methods for identifying web users. Two of them are the most commonly used methods in web log mining systems, whereas the third on is our novel approach that uses a complex cookie-based method to identify web users. Furthermore we also take steps towards identifying the individuals behind the impersonal web users. To demonstrate the efficiency of the new method we developed an implementation called Web Activity Tracking (WAT) system that aims at a more precise distinction of web users based on log data. We present some statistical analysis created by the WAT on real data about the behavior of the Hungarian web users and a comprehensive analysis and comparison of the three methods

Keywords: Data preparation, Tracking individuals, Web useridentification, Web usage mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4392
10757 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems

Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu

Abstract:

Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.

Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
10756 Computational Aspects of Regression Analysis of Interval Data

Authors: Michal Cerny

Abstract:

We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.

Keywords: Linear regression, interval-censored data, computational complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
10755 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition

Authors: M. Hassan, I. Osman, M. Yahia

Abstract:

This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.

Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
10754 A Rough Sets Approach for Relevant Internet/Web Online Searching

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

The internet is constantly expanding. Identifying web links of interest from web browsers requires users to visit each of the links listed, individually until a satisfactory link is found, therefore those users need to evaluate a considerable amount of links before finding their link of interest; this can be tedious and even unproductive. By incorporating web assistance, web users could be benefited from reduced time searching on relevant websites. In this paper, a rough set approach is presented, which facilitates classification of unlimited available e-vocabulary, to assist web users in reducing search times looking for relevant web sites. This approach includes two methods for identifying relevance data on web links based on the priority and percentage of relevance. As a result of these methods, a list of web sites is generated in priority sequence with an emphasis of the search criteria.

Keywords: Web search, Web Mining, Rough Sets, Web Intelligence, Intelligent Portals, Relevance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
10753 Student Satisfaction Data for Work Based Learners

Authors: Rosie Borup, Hanifa Shah

Abstract:

This paper aims to describe how student satisfaction is measured for work-based learners as these are non-traditional learners, conducting academic learning in the workplace, typically their curricula have a high degree of negotiation, and whose motivations are directly related to their employers- needs, as well as their own career ambitions. We argue that while increasing WBL participation, and use of SSD are both accepted as being of strategic importance to the HE agenda, the use of WBL SSD is rarely examined, and lessons can be learned from the comparison of SSD from a range of WBL programmes, and increased visibility of this type of data will provide insight into ways to improve and develop this type of delivery. The key themes that emerged from the analysis of the interview data were: learners profiles and needs, employers drivers, academic staff drivers, organizational approach, tools for collecting data and visibility of findings. The paper concludes with observations on best practice in the collection, analysis and use of WBL SSD, thus offering recommendations for both academic managers and practitioners.

Keywords: Student satisfaction data, work based learning, employer engagement, NSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
10752 Soccer Video Edition Using a Multimodal Annotation

Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid

Abstract:

In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.

Keywords: XML, Multimodal Annotation, recommendation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
10751 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.

Abstract:

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
10750 Pragati Node Popularity (PNP) Approach to Identify Congestion Hot Spots in MPLS

Authors: E. Ramaraj, A. Padmapriya

Abstract:

In large Internet backbones, Service Providers typically have to explicitly manage the traffic flows in order to optimize the use of network resources. This process is often referred to as Traffic Engineering (TE). Common objectives of traffic engineering include balance traffic distribution across the network and avoiding congestion hot spots. Raj P H and SVK Raja designed the Bayesian network approach to identify congestion hors pots in MPLS. In this approach for every node in the network the Conditional Probability Distribution (CPD) is specified. Based on the CPD the congestion hot spots are identified. Then the traffic can be distributed so that no link in the network is either over utilized or under utilized. Although the Bayesian network approach has been implemented in operational networks, it has a number of well known scaling issues. This paper proposes a new approach, which we call the Pragati (means Progress) Node Popularity (PNP) approach to identify the congestion hot spots with the network topology alone. In the new Pragati Node Popularity approach, IP routing runs natively over the physical topology rather than depending on the CPD of each node as in Bayesian network. We first illustrate our approach with a simple network, then present a formal analysis of the Pragati Node Popularity approach. Our PNP approach shows that for any given network of Bayesian approach, it exactly identifies the same result with minimum efforts. We further extend the result to a more generic one: for any network topology and even though the network is loopy. A theoretical insight of our result is that the optimal routing is always shortest path routing with respect to some considerations of hot spots in the networks.

Keywords: Conditional Probability Distribution, Congestion hotspots, Operational Networks, Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
10749 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
10748 Rethinking the Analysis of Means-End Chain Data in Marketing Research

Authors: P. Puustinen, A. Kanto

Abstract:

This paper proposes a new procedure for analyzing means-end chain data in marketing research. Most commonly the collected data is summarized in the Hierarchical Value Map (HVM) illustrating the main attribute-consequence-value linkages. This paper argues that traditionally constructed HVM may give an erroneous impression of the results of a means-end study. To justify the arguments, an alternative procedure to (1) determine the dominant attribute-consequence-value linkages and (2) construct HVM in a precise manner is presented. The current approach makes a contribution to means-end analysis, allowing marketers to address a set of marketing problems, such as advertising strategy.

Keywords: Means-end chain analysis, Laddering, Hierarchical Value Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
10747 A Prototype of Augmented Reality for Visualising Large Sensors’ Datasets

Authors: Folorunso Olufemi Ayinde, Mohd Shahrizal Sunar, Sarudin Kari, Dzulkifli Mohamad

Abstract:

In this paper we discuss the development of an Augmented Reality (AR) - based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations. Therefore we have developed a data model to effectively manage such data and enhance the computational support needed for the effective data explorations. A challenge of this approach is to reduce the data inefficiency powered by the disparate, repeated, inconsistent and missing attributes of most available sensors datasets. To handle this challenge, this paper aim to develop an AR-based scientific visualization interface which automatically identifies, localise and visualizes all necessary data relevant to a particularly selected region of interest (ROI) along the virtual pipeline network. Necessary system architectural supports needed as well as the interface requirements for such visualizations are also discussed in this paper.

Keywords: Sensor Leakages Datasets, Augmented Reality, Sensor Data-Model, Scientific Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
10746 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
10745 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon

Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba

Abstract:

In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.

Keywords: Population, road network, statistical correlations, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996