@article{(Open Science Index):https://publications.waset.org/pdf/386,
	  title     = {Analysis of Web User Identification Methods},
	  author    = {Renáta Iváncsy and  Sándor Juhász},
	  country	= {},
	  institution	= {},
	  abstract     = {Web usage mining has become a popular research
area, as a huge amount of data is available online. These data can be
used for several purposes, such as web personalization, web structure
enhancement, web navigation prediction etc. However, the raw log
files are not directly usable; they have to be preprocessed in order to
transform them into a suitable format for different data mining tasks.
One of the key issues in the preprocessing phase is to identify web
users. Identifying users based on web log files is not a
straightforward problem, thus various methods have been developed.
There are several difficulties that have to be overcome, such as client
side caching, changing and shared IP addresses and so on. This paper
presents three different methods for identifying web users. Two of
them are the most commonly used methods in web log mining
systems, whereas the third on is our novel approach that uses a
complex cookie-based method to identify web users. Furthermore we
also take steps towards identifying the individuals behind the
impersonal web users. To demonstrate the efficiency of the new
method we developed an implementation called Web Activity
Tracking (WAT) system that aims at a more precise distinction of
web users based on log data. We present some statistical analysis
created by the WAT on real data about the behavior of the Hungarian
web users and a comprehensive analysis and comparison of the three
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {1},
	  number    = {10},
	  year      = {2007},
	  pages     = {3049 - 3056},
	  ee        = {https://publications.waset.org/pdf/386},
	  url   	= {https://publications.waset.org/vol/10},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 10, 2007},