Search results for: mathematical algorithm
1176 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: Classification, SOFM, neural network, RGB images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23191175 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: Prediction of financial markets, Adaptive methods, MSE, LSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10201174 Assessment of Channel Unavailability Effect on the Wireless Networks Teletraffic Modeling and Analysis
Authors: Eman S. El-Din, Hesham M. El-Badawy, Salwa H. Elramly
Abstract:
Whereas cellular wireless communication systems are subject to short-and long-term fading. The effect of wireless channel has largely been ignored in most of the teletraffic assessment researches. In this paper, a mathematical teletraffic model is proposed to estimate blocking and forced termination probabilities of cellular wireless networks as a result of teletraffic behavior as well as the outage of the propagation channel. To evaluate the proposed teletraffic model, gamma inter-arrival and general service time distributions have been considered based on wireless channel fading effect. The performance is evaluated and compared with the classical model. The proposed model is dedicated and investigated in different operational conditions. These conditions will consider not only the arrival rate process, but also, the different faded channels models.Keywords: Cellular wireless networks, outage probability, traffic model, gamma inter-arrival distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951173 Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition
Authors: S. Tupsie, A. Isaramongkolrak, P. Pao-la-or
Abstract:
This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.
Keywords: Transposition, Electromagnetic Field, Finite Element Method (FEM), Transmission Line, Computer Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40341172 Determination of the Quality of the Machined Surface Using Fuzzy Logic
Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović
Abstract:
This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.
Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6911171 Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming
Authors: Michael Todinov, Eberechi Weli
Abstract:
The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expressed as integer number), the worst-case running time of the proposed algorithm is O (n x (B+1)), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry.
Keywords: Optimisation, railway risk reduction, budget constraints, dynamic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811170 Evolutionary Program Based Approach for Manipulator Grasping Color Objects
Authors: Y. Harold Robinson, M. Rajaram, Honey Raju
Abstract:
Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811169 Consideration of Criteria of Vibration Comfort of People in Diagnosis and Design of Buildings
Authors: Kawecki J., Kowalska-Koczwara A., Stypula K.
Abstract:
The increasing influence of traffic on building objects and people residing in them should be taken into account in diagnosis and design. Users of buildings expect that vibrations occurring in their environment, will not only lead to damage to the building or its accelerated wear, but neither would affect the required comfort in rooms designed to accommodate people. This article describes the methods and principles useful in designing and building diagnostics located near transportation routes, with particular emphasis on the impact of traffic vibration on people in buildings. It also describes the procedures used in obtaining information about the parameters of vibrations in different cases of diagnostics and design. A universal algorithm of procedure in diagnostics and design of buildings taking into account assurance of human vibration comfort of people residing in the these buildings was presented.Keywords: diagnostics, influence of public transport, influence of vibrations on humans, transport vibrations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741168 Detection and Analysis of Deficiencies in Groundnut Plant using Geometric Moments
Authors: Sumeet S. Nisale, Chandan J. Bharambe, Vidya N.More
Abstract:
We propose our genuine research of geometric moments which detects the mineral inadequacy in the frail groundnut plant. This plant is prone to many deficiencies as a result of the variance in the soil nutrients. By analyzing the leaves of the plant, we detect the visual symptoms that are not recognizable to the naked eyes. We have collected about 160 samples of leaves from the nearby fields. The images have been taken by keeping every leaf into a black box to avoid the external interference. For the first time, it has been possible to provide the farmer with the stages of deficiencies. This paper has applied the algorithms successfully to many other plants like Lady-s finger, Green Bean, Lablab Bean, Chilli and Tomato. But we submit the results of the groundnut predominantly. The accuracy of our algorithm and method is almost 93%. This will again pioneer a kind of green revolution in the field of agriculture and will be a boon to that field.Keywords: Component image, geometric moments, average intensity, average affected area, black box
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21331167 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Tami Alghamdi, Terence Soule
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.
Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3511166 Optimization of PEM Fuel Cell Biphasic Model
Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi
Abstract:
The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.
Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20321165 Multiwavelet and Biological Signal Processing
Authors: Morteza Moazami-Goudarzi, Ali Taheri, Mohammad Pooyan, Reza Mahboobi
Abstract:
In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals and then, selecting it for using with SPIHT codec. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MIT-BIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the Cardinal Balanced Multiwavelet (cardbal2) by the means of identity (Id) prefiltering method to be the best effective transformation. After finding the most efficient multiwavelet, we apply SPIHT coding algorithm on the transformed signal by this multiwavelet.
Keywords: ECG compression, Prefiltering, Cardinal Balanced Multiwavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511164 Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model
Abstract:
Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications.Keywords: Gaussian mixture model, real-time tracking, sequence image, gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771163 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB
Authors: Deepak Kumar, Vivek Kumar, V. P. Singh
Abstract:
This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32591162 Spanning Tree Transformation of Connected Graphs into Single-Row Networks
Authors: S.L. Loh, S. Salleh, N.H. Sarmin
Abstract:
A spanning tree of a connected graph is a tree which consists the set of vertices and some or perhaps all of the edges from the connected graph. In this paper, a model for spanning tree transformation of connected graphs into single-row networks, namely Spanning Tree of Connected Graph Modeling (STCGM) will be introduced. Path-Growing Tree-Forming algorithm applied with Vertex-Prioritized is contained in the model to produce the spanning tree from the connected graph. Paths are produced by Path-Growing and they are combined into a spanning tree by Tree-Forming. The spanning tree that is produced from the connected graph is then transformed into single-row network using Tree Sequence Modeling (TSM). Finally, the single-row routing problem is solved using a method called Enhanced Simulated Annealing for Single-Row Routing (ESSR).Keywords: Graph theory, simulated annealing, single-rowrouting and spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371161 Application-Specific Instruction Sets Processor with Implicit Registers to Improve Register Bandwidth
Authors: Ginhsuan Li, Chiuyun Hung, Desheng Chen, Yiwen Wang
Abstract:
Application-Specific Instruction (ASI ) set Processors (ASIP) have become an important design choice for embedded systems due to runtime flexibility, which cannot be provided by custom ASIC solutions. One major bottleneck in maximizing ASIP performance is the limitation on the data bandwidth between the General Purpose Register File (GPRF) and ASIs. This paper presents the Implicit Registers (IRs) to provide the desirable data bandwidth. An ASI Input/Output model is proposed to formulate the overheads of the additional data transfer between the GPRF and IRs, therefore, an IRs allocation algorithm is used to achieve the better performance by minimizing the number of extra data transfer instructions. The experiment results show an up to 3.33x speedup compared to the results without using IRs.Keywords: Application-Specific Instruction-set Processors, data bandwidth, configurable processor, implicit register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361160 Hybrid Recommender Systems using Social Network Analysis
Authors: Kyoung-Jae Kim, Hyunchul Ahn
Abstract:
This study proposes novel hybrid social network analysis and collaborative filtering approach to enhance the performance of recommender systems. The proposed model selects subgroups of users in Internet community through social network analysis (SNA), and then performs clustering analysis using the information about subgroups. Finally, it makes recommendations using cluster-indexing CF based on the clustering results. This study tries to use the cores in subgroups as an initial seed for a conventional clustering algorithm. This model chooses five cores which have the highest value of degree centrality from SNA, and then performs clustering analysis by using the cores as initial centroids (cluster centers). Then, the model amplifies the impact of friends in social network in the process of cluster-indexing CF.
Keywords: Social network analysis, Recommender systems, Collaborative filtering, Customer relationship management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27731159 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines
Authors: Charalampos Saridakis, Stelios Tsafarakis
Abstract:
Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.Keywords: Clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001158 Towards for Admission Control in WIMAX Relay Station Mesh Network for Mobile Stations out of Coverage Using Ad-Hoc
Authors: Anas Majeed, A. A. Zaidan, B. B. Zaidan, Laiha Mat Kiah
Abstract:
WIMAX relay station mesh network has been approved by IEEE 802.16j as a standard to provide a highly data rate transmission, the RS was implemented to extend the coverage zone of the BS, for instance the MSs previously were out of the coverage of the BS they become in the coverage of the RS, therefore these MSs can have Admission control from the BS through the RS. This paper describe a problem in the mesh network Relay station, for instance the problem of how to serve the mobile stations (MSs) which are out of the Relay station coverage. This paper also proposed a solution for mobile stations out of the coverage of the WIMAX Relay stations mesh Network. Therefore Ad-hoc network defined as a solution by using its admission control schema and apply it on the mobiles inside and outside the Relay station coverage.
Keywords: WIMAX, relay station, mesh network, ad-hoc, WiFi, generic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581157 Remaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain
Authors: Yi Yu, Lin Ma, Yong Sun, Yuantong Gu
Abstract:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.Keywords: Elliptical Basis Function Network, Markov Chain, Missing Covariates, Remaining Useful Life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621156 Learning Process Enhancement for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib
Abstract:
Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291155 An Interference Reduction Strategy for TDD-OFDMA Cellular Systems
Authors: Koudjo M. Koumadi, Kester Quist-Aphetsi, Robert A. Sowah, Amevi Acakpovi
Abstract:
Downlink/Uplink (DL/UL) time slot allocation (TSA) in time division duplex (TDD) systems is generally uniform for all the cells. This TSA however is not efficient in case of different traffic asymmetry ratios in different cells. We first propose a new 3-coordinate architecture to identify cells in an orthogonal frequency division multiple access (OFDMA) system where each cell is divided into three sectors. Then, this coordinate system is used to derive a TSA for symmetric traffic. Mathematical analysis and simulations are used to show that the proposed TSA outperforms the traditional all uniform type of TSA in terms of total intercellular interference, even under uniform symmetrical traffic. Two adaptation strategies are further proposed to adjust the proposed TSA to asymmetrical traffic with different DL/UL traffic ratios in different cells. Further simulation results show that the adaptation strategies also yield higher signal-to-interference ratio (SIR).
Keywords: Crossed TSA, different-entity interference, same-entity interference, uniform TSA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311154 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15161153 Optimal Feedback Linearization Control of PEM Fuel Cell
Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh
Abstract:
This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.
Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22481152 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14341151 Using Historical Data for Stock Prediction of a Tech Company
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.
Keywords: Finance, machine learning, opening price, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6661150 Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System
Authors: Linghui Zhu, Junjie Gu
Abstract:
Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.
Keywords: Absorption; Ammonia-Sodium thiocyanate, Exergy, coefficient of performance (COP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001149 Low-Complexity Channel Estimation Algorithm for MIMO-OFDM Systems
Authors: Ali Beydoun, Hamzé H. Alaeddine
Abstract:
One of the main challenges in MIMO-OFDM system to achieve the expected performances in terms of data rate and robustness against multi-path fading channels is the channel estimation. Several methods were proposed in the literature based on either least square (LS) or minimum mean squared error (MMSE) estimators. These methods present high implementation complexity as they require the inversion of large matrices. In order to overcome this problem and to reduce the complexity, this paper presents a solution that benefits from the use of the STBC encoder and transforms the channel estimation process into a set of simple linear operations. The proposed method is evaluated via simulation in AWGN-Rayleigh fading channel. Simulation results show a maximum reduction of 6.85% of the bit error rate (BER) compared to the one obtained with the ideal case where the receiver has a perfect knowledge of the channel.Keywords: Channel estimation, MIMO, OFDM, STBC, CAZAC sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8811148 Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits
Authors: Santanu Santra, Utpal Roy
Abstract:
The most important mathematical operation for any computing system is addition. An efficient adder can be of greater assistance in designing of any arithmetic circuits. Quantum-dot Cellular Automata (QCA) is a promising nanotechnology to create electronic circuits for computing devices and suitable candidate for next generation of computing systems. The article presents a modest approach to implement a novel XOR gate. The gate is simple in structure and powerful in terms of implementing digital circuits. By applying the XOR gate, the hardware requirement for a QCA circuit can be decrease and circuits can be simpler in level, clock phase and cell count. In order to verify the functionality of the proposed device some implementation of Half Adder (HA) and Full Adder (FA) is checked by means of computer simulations using QCA-Designer tool. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.
Keywords: Clock, Computing system, Majority gate, QCA, QCA Designer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44531147 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain
Authors: Sergio Pissanetzky
Abstract:
The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.
Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089