Search results for: stochastic signals
674 An Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals
Authors: Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effectively combine two conventional approaches. This approach improves the signal separation performance by exploiting features of the conventional approaches. We show the simulation results using artificial data.Keywords: Blind source separation, Independent componentanalysis, Frequency domain, Permutation ambiguity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786673 Independent Component Analysis to Mass Spectra of Aluminium Sulphate
Authors: M. Heikkinen, A. Sarpola, H. Hellman, J. Rämö, Y. Hiltunen
Abstract:
Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.
Keywords: Independent component analysis, massspectroscopy, water treatment, aluminium sulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370672 Improvement of Bit-Error-Rate in Optical Fiber Receivers
Authors: Hadj Bourdoucen, Amer Alhabsi
Abstract:
In this paper, a post processing scheme is suggested for improvement of Bit Error-Rate (BER) in optical fiber transmission receivers. The developed scheme has been tested on optical fiber systems operating with a non-return-to-zero (NRZ) format at transmission rates of up to 10Gbps. The transmission system considered is based on well known transmitters and receivers blocks operating at wavelengths in the region of 1550 nm using a standard single mode fiber. Performance of improved detected signals has been evaluated via the analysis of quality factor and computed bit error rates. Numerical simulations have shown a noticeable improvement of the system BER after implementation of the suggested post processing operation on the detected electrical signals.Keywords: BER improvement, Optical fiber, transmissionperformance, NRZ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150671 On Solving Single-Period Inventory Model under Hybrid Uncertainty
Authors: Madhukar Nagare, Pankaj Dutta
Abstract:
Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.Keywords: Fuzzy expected value, Fuzzy random demand, Hybrid uncertainty, Optimal order quantity, Single-period inventory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020670 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG
Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil
Abstract:
A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.
Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071669 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals
Authors: Fahad Alhussein, Huaping Liu
Abstract:
This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483668 Processing the Medical Sensors Signals Using Fuzzy Inference System
Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi
Abstract:
Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967667 A Novel Single-Wavelength All-Optical Flip-Flop Employing Single SOA-MZI
Authors: H. Kaatuzian, M. Sedghi, S. Khatami
Abstract:
In this paper, by exploiting a single semiconductor optical amplifier-Mach Zehnder Interferometer (SOA-MZI), an integratable all-optical flip-flop (AOFF) is proposed. It is composed of a SOA-MZI with a bidirectional coupler at the output. Output signals of both bar and crossbar of the SOA-MZI is fed back to SOAs located in the arms of the Mach-Zehnder Interferometer (MZI). The injected photon-rates to the SOAs are modulated by feedback signals in order to form optical flip-flop. According to numerical analysis, Gaussian optical pulses with the energy of 15.2 fJ and 20 ps duration with the full width at half-maximum criterion, can switch the states of the SR-AOFF. Also simulation results show that the SR-AOFF has the contrast ratio of 8.5 dB between two states with the transition time of nearly 20 ps.Keywords: All Optical, Flip-Flop, Mach-Zehnder Interferometer (MZI), Semiconductor Optical Amplifier (SOA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025666 Analysis of Heart Beat Dynamics through Singularity Spectrum
Authors: Harish Kumar, Hussein Yahia, Oriol Pont, Michel Haissaguerre, Nicolas Derval, Meleze Hocini
Abstract:
The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.Keywords: Microcanonical Multiscale Formalism (MMF), UnpredictablePoints Manifold (UPM), Heartbeat Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519665 Generational PipeLined Genetic Algorithm (PLGA)using Stochastic Selection
Authors: Malay K. Pakhira, Rajat K. De
Abstract:
In this paper, a pipelined version of genetic algorithm, called PLGA, and a corresponding hardware platform are described. The basic operations of conventional GA (CGA) are made pipelined using an appropriate selection scheme. The selection operator, used here, is stochastic in nature and is called SA-selection. This helps maintaining the basic generational nature of the proposed pipelined GA (PLGA). A number of benchmark problems are used to compare the performances of conventional roulette-wheel selection and the SA-selection. These include unimodal and multimodal functions with dimensionality varying from very small to very large. It is seen that the SA-selection scheme is giving comparable performances with respect to the classical roulette-wheel selection scheme, for all the instances, when quality of solutions and rate of convergence are considered. The speedups obtained by PLGA for different benchmarks are found to be significant. It is shown that a complete hardware pipeline can be developed using the proposed scheme, if parallel evaluation of the fitness expression is possible. In this connection a low-cost but very fast hardware evaluation unit is described. Results of simulation experiments show that in a pipelined hardware environment, PLGA will be much faster than CGA. In terms of efficiency, PLGA is found to outperform parallel GA (PGA) also.Keywords: Hardware evaluation, Hardware pipeline, Optimization, Pipelined genetic algorithm, SA-selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443664 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals
Authors: Suresh S. Salankar, Balasaheb M. Patre
Abstract:
Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.
Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821663 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316662 Modelling an Investment Portfolio with Mandatory and Voluntary Contributions under M-CEV Model
Authors: Amadi Ugwulo Chinyere, Lewis D. Gbarayorks, Emem N. H. Inamete
Abstract:
In this paper, the mandatory contribution, additional voluntary contribution (AVC) and administrative charges are merged together to determine the optimal investment strategy (OIS) for a pension plan member (PPM) in a defined contribution (DC) pension scheme under the modified constant elasticity of variance (M-CEV) model. We assume that the voluntary contribution is a stochastic process and a portfolio consisting of one risk free asset and one risky asset modeled by the M-CEV model is considered. Also, a stochastic differential equation consisting of PPM’s monthly contributions, voluntary contributions and administrative charges is obtained. More so, an optimization problem in the form of Hamilton Jacobi Bellman equation which is a nonlinear partial differential equation is obtained. Using power transformation and change of variables method, an explicit solution of the OIS and the value function are obtained under constant absolute risk averse (CARA). Furthermore, numerical simulations on the impact of some sensitive parameters on OIS were discussed extensively. Finally, our result generalizes some existing result in the literature.
Keywords: DC pension fund, modified constant elasticity of variance, optimal investment strategies, voluntary contribution, administrative charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376661 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: Adaptive filtering, multirate processing, normalized subband adaptive filter, source separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962660 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.
Keywords: Data fusion, Gaussian process regression, signal denoise, temporal extrapolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501659 A Signal Driven Adaptive Resolution Short-Time Fourier Transform
Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin
Abstract:
The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573658 Vibration Signals of Small Vertical Axis Wind Turbines
Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly
Abstract:
In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.
Keywords: Savonius wind turbine, number of blades, vibration amplitude, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948657 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models
Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed
Abstract:
In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.
Keywords: Equivalent Martingale Measure, European Put Option, Girsanov Theorem, Martingales, Monte Carlo method, option price valuation, option price valuation formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735656 On the Hierarchical Ergodicity Coefficient
Authors: Yilun Shang
Abstract:
In this paper, we deal with the fundamental concepts and properties of ergodicity coefficients in a hierarchical sense by making use of partition. Moreover, we establish a hierarchial Hajnal’s inequality improving some previous results.
Keywords: Stochastic matrix, ergodicity coefficient, partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347655 An Optimal Algorithm for Finding (r, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint
Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad
Abstract:
This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (r, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (r, Q) policy which minimizes the expected system costs.Keywords: (r, Q) policy, Stochastic demand, backorders, limited resource, quantity discounts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864654 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity
Authors: M. Barański
Abstract:
This article presents a vibration diagnostic method designed for Permanent Magnets (PM) electrical machines–traction motors and generators. Those machines are commonly used in traction drives of electrical vehicles and small wind or water systems. The described method is very innovative and unique. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analyzed number of publications, which describe vibration diagnostic methods, and tests of electrical machines and there was no method found to determine the technical condition of such machine basing on their own signals. This work presents field-circuit model, results of static tests, results of calculations and simulations.Keywords: Electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity, diagnostics, data acquisition, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883653 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157652 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition
Authors: Liming Zhang
Abstract:
In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.
Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724651 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil
Authors: B. Mendonça, D. Sandwell
Abstract:
The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.Keywords: Ground subsidence, interferometric satellite aperture radar (InSAR), metropolitan region of Sao Paulo, water extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397650 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT
Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze
Abstract:
Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131649 Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis
Authors: S. P. Kozaitis, R. L. Kriner
Abstract:
The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.Keywords: digital signals, electronics, IBIS model, printedcircuit board, wavelets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877648 M-ary Chaotic Sequence Based SLM-OFDM System for PAPR Reduction without Side-Information
Authors: A.Goel, M. Agrawal, P. Gupta Poddar
Abstract:
Selected Mapping (SLM) is a PAPR reduction technique, which converts the OFDM signal into several independent signals by multiplication with the phase sequence set and transmits one of the signals with lowest PAPR. But it requires the index of the selected signal i.e. side information (SI) to be transmitted with each OFDM symbol. The PAPR reduction capability of the SLM scheme depends on the selection of phase sequence set. In this paper, we have proposed a new phase sequence set generation scheme based on M-ary chaotic sequence and a mapping scheme to map quaternary data to concentric circle constellation (CCC) is used. It is shown that this method does not require SI and provides better SER performance with good PAPR reduction capability as compared to existing SLMOFDM methods.
Keywords: Orthogonal frequency division multiplexing (OFDM), Peak-to-average power ratio (PAPR), Selected mapping (SLM), Side information (SI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960647 Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks
Authors: Francisco Aparisi, José Sanz
Abstract:
Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.
Keywords: Multivariate quality control, Artificial Intelligence, Neural Networks, Computer Applications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508646 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis
Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri
Abstract:
In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.Keywords: Automotive gearbox, mathematical morphology, wavelet, bispectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318645 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).
Keywords: Time series modelling, stochastic processes, ARIMA model, Karkheh River.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044