Search results for: rock mass classification
1972 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles
Authors: Tudor Deaconescu, Andrea Deaconescu
Abstract:
The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.
Keywords: Pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11491971 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification
Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal
Abstract:
In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.
Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13641970 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31991969 Operational risks Classification for Information Systems with Service-Oriented Architecture (Including Loss Calculation Example)
Authors: Irina Pyrlina
Abstract:
This article presents the results of a study conducted to identify operational risks for information systems (IS) with service-oriented architecture (SOA). Analysis of current approaches to risk and system error classifications revealed that the system error classes were never used for SOA risk estimation. Additionally system error classes are not normallyexperimentally supported with realenterprise error data. Through the study several categories of various existing error classifications systems are applied and three new error categories with sub-categories are identified. As a part of operational risks a new error classification scheme is proposed for SOA applications. It is based on errors of real information systems which are service providers for application with service-oriented architecture. The proposed classification approach has been used to classify SOA system errors for two different enterprises (oil and gas industry, metal and mining industry). In addition we have conducted a research to identify possible losses from operational risks.
Keywords: Enterprise architecture, Error classification, Oil&Gas and Metal&Mining industries, Operational risks, Serviceoriented architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16041968 Locating Center Points for Radial Basis Function Networks Using Instance Reduction Techniques
Authors: Rana Yousef, Khalil el Hindi
Abstract:
The behavior of Radial Basis Function (RBF) Networks greatly depends on how the center points of the basis functions are selected. In this work we investigate the use of instance reduction techniques, originally developed to reduce the storage requirements of instance based learners, for this purpose. Five Instance-Based Reduction Techniques were used to determine the set of center points, and RBF networks were trained using these sets of centers. The performance of the RBF networks is studied in terms of classification accuracy and training time. The results obtained were compared with two Radial Basis Function Networks: RBF networks that use all instances of the training set as center points (RBF-ALL) and Probabilistic Neural Networks (PNN). The former achieves high classification accuracies and the latter requires smaller training time. Results showed that RBF networks trained using sets of centers located by noise-filtering techniques (ALLKNN and ENN) rather than pure reduction techniques produce the best results in terms of classification accuracy. The results show that these networks require smaller training time than that of RBF-ALL and higher classification accuracy than that of PNN. Thus, using ALLKNN and ENN to select center points gives better combination of classification accuracy and training time. Our experiments also show that using the reduced sets to train the networks is beneficial especially in the presence of noise in the original training sets.
Keywords: Radial basis function networks, Instance-based reduction, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16881967 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator
Authors: M. M. Doustdar, M. Mojtahedpoor
Abstract:
The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441966 Nonlinearity and Spectrum Analysis of Drill Strings with Component Mass Unbalance
Authors: F. Abdul Majeed, H. Karki, Y. Abdel Magid, M. Karkoub
Abstract:
This paper analyses the non linear properties exhibited by a drill string system under various un balanced mass conditions. The drill string is affected by continuous friction in the form of drill bit and well bore hole interactions. This paper proves the origin of limit cycling and increase of non linearity with increase in speed of the drilling in the presence of friction. The spectrum of the frequency response is also studied to detect the presence of vibration abnormalities arising during the drilling process.Keywords: Drill strings, Nonlinear, Spectrum analysis, Unbalanced mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251965 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater
Authors: Abhishek Priyam, Prabha Chand
Abstract:
Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.
Keywords: Channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10651964 Effects of High-Protein, Low-Energy Diet on Body Composition in Overweight and Obese Adults: A Clinical Trial
Authors: Makan Cheraghpour, Seyed Ahmad Hosseini, Damoon Ashtary-Larky, Saeed Shirali, Matin Ghanavati, Meysam Alipour
Abstract:
Background: In addition to reducing body weight, the low-calorie diets can reduce the lean body mass. It is hypothesized that in addition to reducing the body weight, the low-calorie diets can maintain the lean body mass. So, the current study aimed at evaluating the effects of high-protein diet with calorie restriction on body composition in overweight and obese individuals. Methods: 36 obese and overweight subjects were divided randomly into two groups. The first group received a normal-protein, low-energy diet (RDA), and the second group received a high-protein, low-energy diet (2×RDA). The anthropometric indices including height, weight, body mass index, body fat mass, fat free mass, and body fat percentage were evaluated before and after the study. Results: A significant reduction was observed in anthropometric indices in both groups (high-protein, low-energy diets and normal-protein, low-energy diets). In addition, more reduction in fat free mass was observed in the normal-protein, low-energy diet group compared to the high -protein, low-energy diet group. In other the anthropometric indices, significant differences were not observed between the two groups. Conclusion: Independently of the type of diet, low-calorie diet can improve the anthropometric indices, but during a weight loss, high-protein diet can help the fat free mass to be maintained.
Keywords: Diet, high-protein, body mass index, body fat percentage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741963 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481962 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311961 A Hybrid Metaheuristic Framework for Evolving the PROAFTN Classifier
Authors: Feras Al-Obeidat, Nabil Belacel, Juan A. Carretero, Prabhat Mahanti,
Abstract:
In this paper, a new learning algorithm based on a hybrid metaheuristic integrating Differential Evolution (DE) and Reduced Variable Neighborhood Search (RVNS) is introduced to train the classification method PROAFTN. To apply PROAFTN, values of several parameters need to be determined prior to classification. These parameters include boundaries of intervals and relative weights for each attribute. Based on these requirements, the hybrid approach, named DEPRO-RVNS, is presented in this study. In some cases, the major problem when applying DE to some classification problems was the premature convergence of some individuals to local optima. To eliminate this shortcoming and to improve the exploration and exploitation capabilities of DE, such individuals were set to iteratively re-explored using RVNS. Based on the generated results on both training and testing data, it is shown that the performance of PROAFTN is significantly improved. Furthermore, the experimental study shows that DEPRO-RVNS outperforms well-known machine learning classifiers in a variety of problems.Keywords: Knowledge Discovery, Differential Evolution, Reduced Variable Neighborhood Search, Multiple criteria classification, PROAFTN, Supervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14781960 Automatic Voice Classification System Based on Traditional Korean Medicine
Authors: Jaehwan Kang, Haejung Lee
Abstract:
This paper introduces an automatic voice classification system for the diagnosis of individual constitution based on Sasang Constitutional Medicine (SCM) in Traditional Korean Medicine (TKM). For the developing of this algorithm, we used the voices of 309 female speakers and extracted a total of 134 speech features from the voice data consisting of 5 sustained vowels and one sentence. The classification system, based on a rule-based algorithm that is derived from a non parametric statistical method, presents 3 types of decisions: reserved, positive and negative decisions. In conclusion, 71.5% of the voice data were diagnosed by this system, of which 47.7% were correct positive decisions and 69.7% were correct negative decisions.Keywords: Voice Classifier, Sasang Constitution Medicine, Traditional Korean Medicine, SCM, TKM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891959 Principal Component Analysis for the Characterization in the Application of Some Soil Properties
Authors: Kamolchanok Panishkan, Kanokporn Swangjang, Natdhera Sanmanee, Daoroong Sungthong
Abstract:
The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.Keywords: soil organic matter, soil properties, classification, principal components
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41141958 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661957 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor
Authors: Samir Brahim Belhaouari
Abstract:
By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651956 An Exploration on On-line Mass Collaboration: Focusing on its Motivation Structure
Authors: Jae Kyung Ha, Yong-Hak Kim
Abstract:
The Internet has become an indispensable part of our lives. Witnessing recent web-based mass collaboration, e.g. Wikipedia, people are questioning whether the Internet has made fundamental changes to the society or whether it is merely a hyperbolic fad. It has long been assumed that collective action for a certain goal yields the problem of free-riding, due to its non-exclusive and non-rival characteristics. Then, thanks to recent technological advances, the on-line space experienced the following changes that enabled it to produce public goods: 1) decrease in the cost of production or coordination 2) externality from networked structure 3) production function which integrates both self-interest and altruism. However, this research doubts the homogeneity of on-line mass collaboration and argues that a more sophisticated and systematical approach is required. The alternative that we suggest is to connect the characteristics of the goal to the motivation. Despite various approaches, previous literature fails to recognize that motivation can be structurally restricted by the characteristic of the goal. First we draw a typology of on-line mass collaboration with 'the extent of expected beneficiary' and 'the existence of externality', and then we examine each combination of motivation using Benkler-s framework. Finally, we explore and connect such typology with its possible dominant participating motivation.
Keywords: On-line cooperation, typology, mass collaboration, motivation, wikinomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841955 An Investigation on the Effects of Injection Spray Cone on Propulsive Droplets in a Duct
Authors: M. Mojtahedpoor
Abstract:
This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.Keywords: Ramjet, droplet sizing, injection velocity, air flowvelocity, efficient mass fraction..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13961954 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: Classification, data mining, evaluation measures, groundwater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25951953 Analyzing Transformation of 1D-Functions for Frequency Domain based Video Classification
Authors: Kahraman Ayyildiz, Stefan Conrad
Abstract:
In this paper we illuminate a frequency domain based classification method for video scenes. Videos from certain topical areas often contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Assessing main and side frequencies of each repeating movement gives rise to the motion type. We obtain the frequency domain by transforming spatio-temporal motion trajectories. Further on we explain how to compute frequency features for video clips and how to use them for classifying. The focus of the experimental phase is on transforms utilized for our system. By comparing various transforms, experiments show the optimal transform for a motion frequency based approach.Keywords: action recognition, frequency, transform, motion recognition, repeating movement, video classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16951952 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model
Authors: Jaemoon Lim
Abstract:
To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.Keywords: Chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26681951 Integrating Context Priors into a Decision Tree Classification Scheme
Authors: Kasim Terzic, Bernd Neumann
Abstract:
Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance.Keywords: Classification, Decision Trees, Interpretation, Vision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13001950 A Numerical Study of the Effect of Side-Dump Angle on Fuel Droplets Sizing in a Three- Dimensional Side-Dump Combustor
Authors: M. Mojtahedpoor, M. M. Doustdar
Abstract:
A numerical study on the effect of side-dump angle on fuel droplets sizing and effective mass fraction have been investigated in present paper. The mass of fuel vapor inside the flammability limit is named as the effective mass fraction. In the first step we have considered a side-dump combustor with dump angle of 0o (acrossthe cylinder) and by increasing the entrance airflow velocity from 20 to 30, 40 and 50 (m/s) respectively, the mean diameter of fuel droplets sizing and effective mass fraction have been studied. After this step, we have changed the dump angle from 0o to 30o,45o and finally 60o in direction of cylinderand also we have increased the entrance airflow velocity from 20 up to 50 (m/s) with the amount of growth of 10(m/s) in each step, to examine its effects on fuel droplets sizing as well as effective mass fraction. With rise of entrance airflow velocity, these calculations are repeated in each step too. The results show, with growth of dump-angle the effective mass fraction has been decreased and the mean diameter of droplets sizing has been increased. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multicomponent code for the analysis of chemically reacting flows with sprays, is used.Keywords: Side-Dump combustor, Droplets sizing, Side-Dump angle, KIVA-3V
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531949 The Association of Vitamin B₁₂ with Body Weight-and Fat-Based Indices in Childhood Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Vitamin deficiencies are common in obese individuals. Particularly, the status of vitamin B12 and its association with vitamin B9 (folate) and vitamin D is under investigation in recent time. Vitamin B12 is closely related to many vital processes in the body. In clinical studies, its involvement in fat metabolism draws attention from the obesity point of view. Obesity, in its advanced stages and in combination with metabolic syndrome (MetS) findings, may be a life-threatening health problem. Pediatric obesity is particularly important, because it may be a predictor of the severe chronic diseases during adulthood period of the child. Due to its role in fat metabolism, vitamin B12 deficiency may disrupt metabolic pathways of the lipid and energy metabolisms in the body. The association of low B12 levels with obesity degree may be an interesting topic to be investigated. Obesity indices may be helpful at this point. Weight- and fat-based indices are available. Of them, body mass index (BMI) is in the first group. Fat mass index (FMI), fat-free mass index (FFMI) and diagnostic obesity notation model assessment-II (D2I) index lie in the latter group. The aim of this study is to clarify possible associations between vitamin B12 status and obesity indices in pediatric population. The study comprises a total of 122 children. 32 children were included in the normal-body mass index (N-BMI) group. 46 and 44 children constitute groups with morbid obese children without MetS and with MetS, respectively. Informed consent forms and the approval of the institutional ethics committee were obtained. Tables prepared for obesity classification by World Health Organization were used. MetS criteria were defined. Anthropometric and blood pressure measurements were taken. BMI, FMI, FFMI, D2I were calculated. Routine laboratory tests were performed. Vitamin B9, B12, D concentrations were determined. Statistical evaluation of the study data was performed. Vitamin B9 and vitamin D levels were reduced in MetS group compared to children with N-BMI (p > 0.05). Significantly lower values were observed in vitamin B12 concentrations of MetS group (p < 0.01). Upon evaluation of blood pressure as well as triglyceride levels, there exist significant increases in morbid obese children. Significantly decreased concentrations of high-density lipoprotein cholesterol were observed. All of the obesity indices and insulin resistance index exhibit increasing tendency with the severity of obesity. Inverse correlations were calculated between vitamin D and insulin resistance index as well as vitamin B12 and D2I in morbid obese groups. In conclusion, a fat-based index, D2I, was the most prominent body index, which shows strong correlation with vitamin B12 concentrations in the late stage of obesity in children. A negative correlation between these two parameters was a confirmative finding related to the association between vitamin B12 and obesity degree.
Keywords: Body mass index, children, D2I index, fat mass index, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7111948 The Research of Fuzzy Classification Rules Applied to CRM
Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang
Abstract:
In the era of great competition, understanding and satisfying customers- requirements are the critical tasks for a company to make a profits. Customer relationship management (CRM) thus becomes an important business issue at present. With the help of the data mining techniques, the manager can explore and analyze from a large quantity of data to discover meaningful patterns and rules. Among all methods, well-known association rule is most commonly seen. This paper is based on Apriori algorithm and uses genetic algorithms combining a data mining method to discover fuzzy classification rules. The mined results can be applied in CRM to help decision marker make correct business decisions for marketing strategies.Keywords: Customer relationship management (CRM), Data mining, Apriori algorithm, Genetic algorithm, Fuzzy classification rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16611947 Estimation of Natural Frequency of the Bearing System under Periodic Force Based on Principal of Hydrodynamic Mass of Fluid
Authors: M. H. Pol, A. Bidi, A. V. Hoseini
Abstract:
Estimation of natural frequency of structures is very important and isn-t usually calculated simply and sometimes complicated. Lack of knowledge about that caused hard damage and hazardous effects. In this paper, with using from two different models in FEM method and based on hydrodynamic mass of fluids, natural frequency of an especial bearing (Fig. 1) in an electric field (or, a periodic force) is calculated in different stiffness and different geometric. In final, the results of two models and analytical solution are compared.Keywords: Natural frequency of the bearing, Hydrodynamic mass of fluid method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26461946 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9481945 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33081944 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: Linear stability analysis, heat source, porous medium, mass flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201943 Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct
Authors: M. M. Doustdar , M. Mojtahedpoor
Abstract:
This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.Keywords: Ramjet, droplet sizing, injection velocity, air flow velocity, efficient mass fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866