Search results for: parameter uncertainty.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1452

Search results for: parameter uncertainty.

1182 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map

Authors: Alexandros Leontitsis, Archana P. Sangole

Abstract:

This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.

Keywords: Parameter estimation, self-organizing feature maps, spherical topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1181 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: Modelling, Monte Carlo Simulations, Probabilistic Models, Data Clustering, Reinforced Concrete Members, Structural Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
1180 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: Biomagnetic fluid, FHD, nonlinear stretching sheet, slip parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
1179 EML-Estimation of Multivariate t Copulas with Heuristic Optimization

Authors: Jin Zhang, Wing Lon Ng

Abstract:

In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.

Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
1178 Optimization of Parametric Studies Using Strategies of Sampling Techniques

Authors: Lenka Ševelová, Aleš Florian

Abstract:

To improve the efficiency of parametric studies or tests planning the method is proposed, that takes into account all input parameters, but only a few simulation runs are performed to assess the relative importance of each input parameter. For K input parameters with N input values the total number of possible combinations of input values equals NK. To limit the number of runs, only some (totally N) of possible combinations are taken into account. The sampling procedure Updated Latin Hypercube Sampling is used to choose the optimal combinations. To measure the relative importance of each input parameter, the Spearman rank correlation coefficient is proposed. The sensitivity and the influence of all parameters are analyzed within one procedure and the key parameters with the largest influence are immediately identified.

Keywords: Concrete, pavement, simulation, reliability, Latin Hypercube Sampling, parametric studies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
1177 A Meshfree Solution of Tow-Dimensional Potential Flow Problems

Authors: I. V. Singh, A. Singh

Abstract:

In this paper, mesh-free element free Galerkin (EFG) method is extended to solve two-dimensional potential flow problems. Two ideal fluid flow problems (i.e. flow over a rigid cylinder and flow over a sphere) have been formulated using variational approach. Penalty and Lagrange multiplier techniques have been utilized for the enforcement of essential boundary conditions. Four point Gauss quadrature have been used for the integration on two-dimensional domain (Ω) and nodal integration scheme has been used to enforce the essential boundary conditions on the edges (┌). The results obtained by EFG method are compared with those obtained by finite element method. The effects of scaling and penalty parameters on EFG results have also been discussed in detail.

Keywords: Meshless, EFG method, potential flow, Lagrange multiplier method, penalty method, penalty parameter and scaling parameter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1176 Formulation, Analysis and Validation of Takagi-Sugeno Fuzzy Modeling For Robotic Monipulators

Authors: Rafael Jorge Menezes Santos, Ginalber Luiz de Oliveira Serra, Carlos César Teixeira Ferreira

Abstract:

This paper proposes a methodology for analysis of the dynamic behavior of a robotic manipulator in continuous time. Initially this system (nonlinear system) will be decomposed into linear submodels and analyzed in the context of the Linear and Parameter Varying (LPV) Systems. The obtained linear submodels, which represent the local dynamic behavior of the robotic manipulator in some operating points were grouped in a Takagi-Sugeno fuzzy structure. The obtained fuzzy model was analyzed and validated through analog simulation, as universal approximator of the robotic manipulator.

Keywords: modeling of nonlinear dynamic systems, Takagi- Sugeno fuzzy model, Linear and Parameter Varying (LPV) System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
1175 The Mutated Distance between Two Mixture Trees

Authors: Wan Chian Li, Justie Su-Tzu Juan, Yi-Chun Wang, Shu-Chuan Chen

Abstract:

The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are O(n2 × max{h(T1), h(T2)}) and O(n2), respectively

Keywords: evolutionary tree, mixture tree, mutated site, distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
1174 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
1173 Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet

Authors: Kai-Long Hsiao

Abstract:

In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect.

Keywords: Nonlinearly stretching sheet, Free convection, Finite-difference, Radiation effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1172 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions

Authors: I. Otete, A. I. Ejere, I. S. Okunzuwa

Abstract:

In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.

Keywords: Schrödinger's equation, bound state, Hulthen-Yukawa potential, Nikiforov-Uvarov, D-dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
1171 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.

Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1170 Design of a Non-linear Observer for VSI Fed Synchronous Motor

Authors: P. Ramana , K. Alice Mary, M. Surya Kalavathi, M. Phani Kumar

Abstract:

This paper discusses two observers, which are used for the estimation of parameters of PMSM. Former one, reduced order observer, which is used to estimate the inaccessible parameters of PMSM. Later one, full order observer, which is used to estimate all the parameters of PMSM even though some of the parameters are directly available for measurement, so as to meet with the insensitivity to the parameter variation. However, the state space model contains some nonlinear terms i.e. the product of different state variables. The asymptotic state observer, which approximately reconstructs the state vector for linear systems without uncertainties, was presented by Luenberger. In this work, a modified form of such an observer is used by including a non-linear term involving the speed. So, both the observers are designed in the framework of nonlinear control; their stability and rate of convergence is discussed.

Keywords: Permanent magnet synchronous motor, Mathematicalmodelling, Rotor reference frame, parameter estimation, Luenbergerobserver, reduced order observer, full order observer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1169 Calibration of Syringe Pumps Using Interferometry and Optical Methods

Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins

Abstract:

Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.

Keywords: Calibration, interferometry, syringe pump, optical method, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1168 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
1167 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: Animal food, Stochastic linear programming, Production planning, Demand Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
1166 Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
1165 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen

Abstract:

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1164 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

Authors: N.S. Tomer, Phool Singh, Manoj Kumar

Abstract:

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
1163 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model

Authors: Satoshi Usami

Abstract:

Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.

Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1162 A Dynamic Model of Air Pollution, Health,and Population Growth Using System Dynamics: A Study on Tehran-Iran (With Computer Simulation by the Software Vensim)

Authors: Keyvan Shahgholian, Hamid Hajihosseini

Abstract:

The significance of environmental protection is wellknown in today's world. The execution of any program depends on sufficient knowledge and required familiarity with environment and its pollutants. Taking advantage of a systematic method, as a new science, in environmental planning can solve many problems. In this article, air pollution in Tehran and its relationship with health and population growth have been analyzed using dynamic systems. Firstly, by using casual loops, the relationship between the parameters effective on air pollution in Tehran were taken into consideration, then these casual loops were turned into flow diagrams [6], and finally, they were simulated using the software Vensim [16]in order to conclude what the effect of each parameter will be on air pollution in Tehran in the next 10 years, how changing of one or more parameters influences other parameters, and which parameter among all other parameters requires to be controlled more.

Keywords: Air pollutions, Simulation, System Dynamics, Tehran, Vensim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4258
1161 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.

Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1160 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure had been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1m length, 8mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: Heat pipe, inclination, optimization, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
1159 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1158 Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
1157 Soft Real-Time Fuzzy Task Scheduling for Multiprocessor Systems

Authors: Mahdi Hamzeh, Sied Mehdi Fakhraie, Caro Lucas

Abstract:

All practical real-time scheduling algorithms in multiprocessor systems present a trade-off between their computational complexity and performance. In real-time systems, tasks have to be performed correctly and timely. Finding minimal schedule in multiprocessor systems with real-time constraints is shown to be NP-hard. Although some optimal algorithms have been employed in uni-processor systems, they fail when they are applied in multiprocessor systems. The practical scheduling algorithms in real-time systems have not deterministic response time. Deterministic timing behavior is an important parameter for system robustness analysis. The intrinsic uncertainty in dynamic real-time systems increases the difficulties of scheduling problem. To alleviate these difficulties, we have proposed a fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks in multiprocessor systems. Static and dynamic optimal scheduling algorithms fail with non-critical overload. In contrast, our approach balances task loads of the processors successfully while consider starvation prevention and fairness which cause higher priority tasks have higher running probability. A simulation is conducted to evaluate the performance of the proposed approach. Experimental results have shown that the proposed fuzzy scheduler creates feasible schedules for homogeneous and heterogeneous tasks. It also and considers tasks priorities which cause higher system utilization and lowers deadline miss time. According to the results, it performs very close to optimal schedule of uni-processor systems.

Keywords: Computational complexity, Deadline, Feasible scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor systems, Robustness, System utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1156 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: Antenna array, signal detection, ToA, AoA estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
1155 Longitudinal Shear Modulus of Single Aramid, Carbon and Glass Fibres by Torsion Pendulum Tests

Authors: I Prasanna Kumar, Satya Prakash Kushwaha, Preetamkumar Mohite, Sudhir Kamle

Abstract:

The longitudinal shear moduli of a single aramid, carbon and glass fibres are measured in the present study. A popularly known concept of freely oscillating torsion pendulum has been used to characterize the torsional modulus. A simple freely oscillating torsional pendulum setup is designed with two different types of plastic discs: horizontal and vertical, as the known mass of the pendulum. The time period of the torsional oscillation is measured to determine the torsional rigidity of the fibre. Then the shear modulus of the fibre is calculated from its torsional rigidity. The mean shear modulus of aramid, carbon and glass fibres  measured are 6.22±0.09, 18.5±0.91, 38.1±3.55 GPa by horizontal disc pendulum and 6.19±0.13, 18.1±1.34 and 39.5±1.83 GPa by vertical disc pendulum, respectively. The results obtained by both pendulums differed by less than 5% and agreed well with the results reported in literature for these three types of fibres. A detailed uncertainty calculations are carried out for the measurements. It is seen that scatter as well as uncertainty (or error) in the measured shear modulus of these fibres is less than 10%. For aramid fibres the effect of gauge length on the shear modulus value is also studied. It is verified that the scatter in measured shear modulus value increases with gauge length and scatter in fibre diameter.

Keywords: Aramid; Carbon; Glass fibres, Longitudinal shear modulus, Torsion pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3768
1154 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter

Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.

Abstract:

This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.

Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1153 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

Authors: Ibrahim F. Jasim

Abstract:

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713