Search results for: medical data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7856

Search results for: medical data

7586 A Study of Current Maintenance Strategies and the Reliability of Critical Medical Equipment in Hospitals in Relation to Patient Outcomes

Authors: Khelood A. Mkalaf, Peter Gibson, John Flanagan

Abstract:

This study investigates the relationship between the reliability of critical medical equipment (CME) and the effectiveness of CME maintenance management strategies in relation to patient outcomes in 84 public hospitals of a top 20 OECD country. The work has examined the effectiveness of CME maintenance management strategies used by the public hospital system of a large state run health organization. The conceptual framework was designed to examine the significance of the relationship between six variables: (1) types of maintenance management strategies, (2) maintenance services, (3) maintenance practice, (4) medical equipment reliability, (5) maintenance costs and (6) patient outcomes. The results provide interesting insights into the effectiveness of the maintenance strategies used. For example, there appears to be about a 1 in 10 000 probability of failure of anesthesia equipment, but these seem to be confined to specific maintenance situations. There are also some findings in relation to outsourcing of maintenance. For each of the variables listed, results are reported in relation to the various types of maintenance strategies and services. Decision-makers may use these results to evaluate more effective maintenance strategies for their CME and generate more effective patient outcomes.

Keywords: Critical medical equipment, maintenance strategy, patient outcomes, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4928
7585 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring

Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek

Abstract:

In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.

Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
7584 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images

Authors: Maninder Pal

Abstract:

Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.

Keywords: Zooming, interpolation, medical images, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
7583 Speech Data Compression using Vector Quantization

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table shows computational complexity of these three algorithms. Here we have introduced a new performance parameter Average Fractional Change in Speech Sample (AFCSS). Our FCG algorithm gives far better performance considering mean absolute error, AFCSS and complexity as compared to others.

Keywords: Vector Quantization, Data Compression, Encoding, , Speech coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
7582 Ontology and CDSS Based Intelligent Health Data Management in Health Care Server

Authors: Eun-Jung Ko, Hyung-Jik Lee, Jeun-Woo Lee

Abstract:

In ubiqutious healthcare environment, user's health data are transfered to the remote healthcare server by the user's wearable system or mobile phone. These collected user's health data should be managed and analyzed in the healthcare server, so that care giver or user can monitor user's physiological state. In this paper, we designed and developed the intelligent Healthcare Server to manage the user's health data using CDSS and ontology. Our system can analyze user's health data semantically using CDSS and ontology, and report the result of user's physiological raw data to the user and care giver.

Keywords: u-healthcare, CDSS, healthcare server, health data, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
7581 A Genetic Algorithm for Clustering on Image Data

Authors: Qin Ding, Jim Gasvoda

Abstract:

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

Keywords: Clustering, data mining, genetic algorithm, image data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
7580 A Holistic Framework for Unifying Data Security and Management in Modern Enterprises

Authors: Ashly Joseph

Abstract:

Modern businesses struggle significantly to secure and manage their data properly as the volume and complexity of their data both expand exponentially. Through the use of a multi-layered defense strategy, a centralized management platform, and cutting-edge technologies like AI, this research paper presents a comprehensive framework to integrate data security and management. The constraints of current data protection and management strategies, technological advancements, and the evolving threat landscape are all examined in this article. It suggests best practices for putting into practice integrated data security and governance models, placing an emphasis on ongoing adaptation. The advantages mentioned include a strengthened security posture, simpler procedures, lower costs, and reduced complexity. Additionally, issues including skill shortages, antiquated systems, and cultural obstacles are examined. Security executives and Chief Information Security Officers are given practical advice on how to evaluate, plan, and put into place strong data-centric security and management capabilities. The goal of the paper is to provide a thorough study of the data security and management landscape and to arm contemporary businesses with the knowledge they need to be proactive in protecting their data assets.

Keywords: Data security, security management, cloud computing, cybersecurity, data governance, security architecture, data management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301
7579 Post Mining- Discovering Valid Rules from Different Sized Data Sources

Authors: R. Nedunchezhian, K. Anbumani

Abstract:

A big organization may have multiple branches spread across different locations. Processing of data from these branches becomes a huge task when innumerable transactions take place. Also, branches may be reluctant to forward their data for centralized processing but are ready to pass their association rules. Local mining may also generate a large amount of rules. Further, it is not practically possible for all local data sources to be of the same size. A model is proposed for discovering valid rules from different sized data sources where the valid rules are high weighted rules. These rules can be obtained from the high frequency rules generated from each of the data sources. A data source selection procedure is considered in order to efficiently synthesize rules. Support Equalization is another method proposed which focuses on eliminating low frequency rules at the local sites itself thus reducing the rules by a significant amount.

Keywords: Association rules, multiple data stores, synthesizing, valid rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
7578 RFID-ready Master Data Management for Reverse Logistics

Authors: Jincheol Han, Hyunsun Ju, Jonghoon Chun

Abstract:

Sharing consistent and correct master data among disparate applications in a reverse-logistics chain has long been recognized as an intricate problem. Although a master data management (MDM) system can surely assume that responsibility, applications that need to co-operate with it must comply with proprietary query interfaces provided by the specific MDM system. In this paper, we present a RFID-ready MDM system which makes master data readily available for any participating applications in a reverse-logistics chain. We propose a RFID-wrapper as a part of our MDM. It acts as a gateway between any data retrieval request and query interfaces that process it. With the RFID-wrapper, any participating applications in a reverse-logistics chain can easily retrieve master data in a way that is analogous to retrieval of any other RFID-based logistics transactional data.

Keywords: Reverse Logistics, Master Data Management, RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
7577 A Review of Methods for 2D/3D Registration

Authors: Panos D. Kotsas, Tony Dodd

Abstract:

2D/3D registration is a special case of medical image registration which is of particular interest to surgeons. Applications of 2D/3D registration are [1] radiotherapy planning and treatment verification, spinal surgery, hip replacement, neurointerventions and aortic stenting. The purpose of this paper is to provide a literature review of the main methods for image registration for the 2D/3D case. At the end of the paper an algorithm is proposed for 2D/3D registration based on the Chebyssev polynomials iteration loop.

Keywords: Medical image registration, review, 2D/3D

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
7576 Dynamic Models versus Frailty Models for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent event data is a special type of multivariate survival data. Dynamic and frailty models are one of the approaches that dealt with this kind of data. A comparison between these two models is studied using the empirical standard deviation of the standardized martingale residual processes as a way of assessing the fit of the two models based on the Aalen additive regression model. Here we found both approaches took heterogeneity into account and produce residual standard deviations close to each other both in the simulation study and in the real data set.

Keywords: Dynamic, frailty, misspecification, recurrent events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
7575 Designing Transcutaneous Inductive Powering Links for Implanted Micro-System Device

Authors: Saad Mutashar Abbas, M. A. Hannan, S. A. Samad, A. Hussain

Abstract:

This paper presented a proposed design for transcutaneous inductive powering links. The design used to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 13.56 MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 13 % and the modulation rate 7.3% with data rate 1 Mbit/s assuming Tbit=1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation the electronic workbench MULISIM 11 has been used. The novel circular plane (pancake) coils was simulated using ANSOFT- HFss software.

Keywords: Implanted devices, ASK techniques, Class-E power amplifier, Inductive powering and low-frequency ISM band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
7574 Issues and Architecture for Supporting Data Warehouse Queries in Web Portals

Authors: Minsoo Lee, Yoon-kyung Lee, Hyejung Yoon, Soo-kyung Song, Sujeong Cheong

Abstract:

Data Warehousing tools have become very popular and currently many of them have moved to Web-based user interfaces to make it easier to access and use the tools. The next step is to enable these tools to be used within a portal framework. The portal framework consists of pages having several small windows that contain individual data warehouse query results. There are several issues that need to be considered when designing the architecture for a portal enabled data warehouse query tool. Some issues need special techniques that can overcome the limitations that are imposed by the nature of data warehouse queries. Issues such as single sign-on, query result caching and sharing, customization, scheduling and authorization need to be considered. This paper discusses such issues and suggests an architecture to support data warehouse queries within Web portal frameworks.

Keywords: Data Warehousing tools, data warehousing queries, web portal frameworks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
7573 The Effect of Relaxation Training on First Year Nursing Students Anxiety in Clinical Setting

Authors: S. Ahmadnejad, Z. Monjamed, M. Pakravannejad, A. Malekian

Abstract:

The investigating and assessing the effects of relaxation training on the levels of state anxiety concerning first year female nursing students at their initial experience in clinical setting. This research is a quasi experimental study that was carried out in nursing and midwifery faculty of Tehran university of medical sciences .The sample of research consists 60 first term female nursing students were selected through convenience and random sampling. 30 of them were the experimental group and 30 of them were in control group. The Instruments of data-collection has been a questionnaire which consists of 3 parts. The first part includes 10 questions about demographic characteristics .the second part includes 20 question about anxiety (test 'Spielberg' ). The 3rd part includes physiological indicators of anxiety (BP, P, R, body temperature). The statistical tests included t-test and  and fisher test, Data were analyzed by SPSS software.

Keywords: Anxiety, Nursing students, Relaxation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
7572 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
7571 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks

Authors: A. Krishna Veni, R.Geetha

Abstract:

Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.

Keywords: Aggregation, lifetime, network security, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
7570 Development of Greenhouse Analysis Tools for Home Agriculture Project

Authors: M. Amir Abas, M. Dahlui

Abstract:

This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse..

Keywords: Monitoring, Environment, Greenhouse, Analysis tools

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
7569 Use of a Learner's Log for Effective Self-Directed Learning in PBL

Authors: Amudha Kadirvelu, Sivalal Sadasivan

Abstract:

While the problem based learning (PBL) approach promotes unsupervised self-directed learning (SDL), many students experience difficulty juggling the role of being an information recipient and information seeker. Logbooks have been used to assess trainee doctors but not in other areas. This study aimed to determine the effectiveness of logbook for assessing SDL during PBL sessions in first year medical students. The log book included a learning checklist and knowledge and skills components. Comparisons with the baseline assessment of student performance in PBL and that at semester end after logbook intervention showed significant improvements in student performance (31.5 ± 8 vs. 17.7 ± 4.4; p<0.001) with a large effect size of 3.93. The learner-s log for PBL has played an important role in enhancing SDL in first year medical students. Learner-s log could be a good self-assessment tool for the undergraduate medical students.

Keywords: Problem based learning, self-directed learning, logbook, self-assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
7568 Investigation on Feature Extraction and Classification of Medical Images

Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik

Abstract:

In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..

Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3019
7567 A Robust Data Hiding Technique based on LSB Matching

Authors: Emad T. Khalaf, Norrozila Sulaiman

Abstract:

Many researchers are working on information hiding techniques using different ideas and areas to hide their secrete data. This paper introduces a robust technique of hiding secret data in image based on LSB insertion and RSA encryption technique. The key of the proposed technique is to encrypt the secret data. Then the encrypted data will be converted into a bit stream and divided it into number of segments. However, the cover image will also be divided into the same number of segments. Each segment of data will be compared with each segment of image to find the best match segment, in order to create a new random sequence of segments to be inserted then in a cover image. Experimental results show that the proposed technique has a high security level and produced better stego-image quality.

Keywords: steganography; LSB Matching; RSA Encryption; data segments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
7566 Comprehensive Analysis of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi

Abstract:

Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.

Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
7565 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data

Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto

Abstract:

This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.

Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
7564 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: Genetic data, Pinzgau cattle, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
7563 Impact Assessment of Credit Policy and Medical Credit Facility (MCF) on Nigerian Private Sector Health Market: Evidence from Eight Nigerian States

Authors: Chimaobi V. Okolo, Kenneth A. Okpala, Johnbull S. Ogboi

Abstract:

A teeming set of doctors that graduated from various universities within and outside Nigeria with the hope of practicing in the country, has their hope shattered because of poor financing, lack of medical equipments and a very weak healthcare systems. Such hydra headed challenges, allows room for quackery which increasingly contributes to the cause of mortality in Nigeria. With a view of reversing the challenges of healthcare delivery and financing in Nigeria, African Health Market for Equity (AHME), a project funded by the Bill and Melinda Gates foundation [With contribution from Department For International Development (DFID)] and currently implemented in three African Countries (Nigeria, Kenya and Ghana) over a Five (5) year period supports the healthcare sector via Medical credit fund (MCF). The study examines the impact of credit policy and medical credit funding on Nigerian health market. Ordinary least square analysis, correlation and granger causality tests were employed to measure the extent to which the Nigerian healthcare market has been influenced. Medical credit fund significantly and positively influenced average monthly turnover of private healthcare providers and Commercial bank’s lending rate had a weak relationship with access to credit/approved loans (13.46%). The programme has so far made 13.91% progress, which is very poor, considering the minimum targeted private health care providers (437.6) and expected number of loan approvals (180.4) for the two years. Medical credit policy in Nigeria should be revised to include private healthcare providers in rural area for more positive impact and increased returns. Good brand advert and sensitization of the programme to stakeholders and health pressure group, and an extension of the programme beyond five years is necessary to better address the issues raised in the study.

Keywords: Credit, health market, medical credit facility, policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
7562 An Approach for the Prediction of Diabetes via Relief Feature Selection

Authors: Nebi Gedik

Abstract:

One of the most common chronic diseases in the world, diabetes is brought on by insufficient insulin production by the pancreas or by inefficient insulin utilization by the body. The disease is linked to the interplay of lifestyle, behavioral and medical circumstances, demographics, and genetic risk factors. Early disease detection is crucial for helping medical professionals with diagnosis or prognosis as well as for creating a successful preventative strategy. Machine learning techniques are utilized for this purpose in order to identify diabetes from medical records. Finding the characteristics or features that provide the best prediction of classification for diabetes detection is the aim of this study. The performance of each feature is compared using the linear discriminant analysis and k-nearest neighbor classifiers. The feature that yields the best classification results has been determined.

Keywords: Diabetes, relief feature selection, k-nearest neighbor classifiers, lenear discriminant analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27
7561 A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference

Authors: Azhar Rauf, Sareer Badshah, Shah Khusro

Abstract:

This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.

Keywords: Fine Grained Security, Data Accessibility, Inference, Row, Cell, Column Level Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
7560 Weka Based Desktop Data Mining as Web Service

Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella

Abstract:

Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.

Keywords: desktop application, Weka mining, web service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4089
7559 A Numerical Model for Simulation of Blood Flow in Vascular Networks

Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia

Abstract:

An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.

Keywords: Blood flow, Morphometric data, Vascular tree, Strahler ordering system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
7558 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
7557 Transcutaneous Inductive Powering Links Based on ASK Modulation Techniques

Authors: S. M. Abbas, M. A. Hannan, S. A. Samad, A. Hussain

Abstract:

This paper presented a modified efficient inductive powering link based on ASK modulator and proposed efficient class- E power amplifier. The design presents the external part which is located outside the body to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 10MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 11.1% and the modulation rate 7.2% with data rate 1 Mbit/s assuming Tbit = 1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation, the electronic workbench MULISIM 11 has been used.

Keywords: Implanted devices, ASK techniques, Class-E power amplifier, Inductive powering and low-frequency ISM band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382