
 

 

  

Abstract—Recurrent event data is a special type of multivariate 
survival data. Dynamic and frailty models are one of the approaches 

that dealt with this kind of data. A comparison between these two 

models is studied using the empirical standard deviation of the 

standardized martingale residual processes as a way of assessing the 

fit of the two models based on the Aalen additive regression model. 

Here we found both approaches took heterogeneity into account and 

produce residual standard deviations close to each other both in the 

simulation study and in the real data set. 
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I. INTRODUCTION 

HERE  are several approaches that have been proposed in 

the literature to deal with heterogeneity in recurrent event 

data. One of the approaches is to use information on previous 

events for an individual as time-dependent covariates 

explaining the occurrence of future events. This is called a 

dynamic approach. Dynamic models are models that include 

time dependent covariates representing individual-specific 

histories not known at the outset of the study [1], [2], [3]. One 

way which uses the Cox model with dynamic covariates, is 

given in [4]. An alternative with which we will be concerned is 

based on the additive regression model [5], [6]. The other 

approach is to assume random effects or frailty is present in 

the data. A frailty is an unobserved random factor that 

provides a convenient way to describe unexplained 

heterogeneity between individuals or the influence of 

unobserved risk factors in the model. Usually we assume 

frailty acts multiplicatively on the intensity function. People 

with a large value of the frailty will experience more events 

and people with small frailty values will experience fewer 

events, in comparison with other people with the same 

observed covariates. The reason why we consider this 

approach is its connection with the dynamic modelling 

approach. 

The term frailty was first introduced in this context by 

Vaupel [7] for univariate survival models to account for 

unobserved heterogeneity or missing covariates in the study 

population. Vaupel [8] and Aalen [9] discussed such 

heterogeneity and selection effects in more details. For full 

details see the book by Hougaard [10].  

An important issue in the frailty model area is the choice of 

the frailty distribution. The most common one is the gamma 

distribution [11], [7], [10] because of the nice mathematical 
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properties of the gamma family. Other distributions that can be 

chosen for the frailty are the positive stable distribution [12], 

the three parameter power variance distribution [13], the 

lognormal distribution [14] and the compound Poisson 

distribution [15], [16]. We will use gamma only. 

There are two classes of frailty models. The first class is the 

univariate frailty model for univariate survival times. The 

second one is multivariate frailty models that describe 

multivariate survival times (e.g. multiple events or repeated 

events for the same individual). Recurrent event time data of 

interest in this work provide a special case of multivariate 

survival data. For this kind of data there are also two frailty 

models. The first considers the random effect across 

individuals and constant over time and it has been studied 

extensively in [10]. The aim of the second one is to model 

correlated event times [17], [18]. 

In this paper, a brief background to frailty modeling will be 

given and its connection to the dynamic model will be 

presented. This relationship will be examined through a 

simulation study and an application (Blue Bay data). 

II.  FRAILTY MODEL 

The additive hazard frailty model assumes that, for a given 

vector of observed covariates )(txi
 and unobserved frailty 

variable
iZ , which is considered as a random variable over the 

population of individuals, the counting process )(tN i
for an 

individual i  at time t  has intensity  
 

,))(|()()),(,|( txttYZZtxFt iiiiiti αλ =−          (1)  

                                 

where −
t

F  is the history or the filtration, )(tYi
 is an at risk 

indicator with value one when individual at risk and zero 

otherwise and  

)()(...)()()())(|( 110 txttxtttxt ippii βββα +++=  

with )(0 tβ  being the hazard baseline and 

pjtj ,...,2,1),( =β  the covariate coefficients.  

The model is completed by assuming a parametric 

distribution for iZ  and working with the marginal intensity 

,))(|()(]|[))(,|( txttYFZEtxFt iitiiti αλ −− =       (2) 
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When sZ i ' are gamma distributed with unit mean and 

varianceξ , then the conditional expectation of iZ  for 

individual i  given the observed history for this individual is 
given by ([19] and [20]), 

)(1

)(1
]|[

t

tN
FZE

i

i

ti Λ+

+
=

−

−

ξ
ξ

                         (3) 

where  ∫=Λ
t

iii dssxssYt
0

))(|()()( α . 

Estimation in this model can be based on an iterative 

approach, using the EM-algorithm. In the E-step iZ is 

replaced by its conditional expectation ( iẐ ) given the history. 

The M-step is then to calculate the estimates of the regression 

coefficients as if Z  has been observed 

( ]|[ˆ
−==
tiii FZEZZ ) and by maximising the marginal 

likelihood of total event counts one can get an estimate of ξ  
[21]. This model is often called the shared frailty model, 

meaning that the same frailty is shared by all the event times 

pertaining to one individual. 

III. CONNECTION BETWEEN FRAILTY  

AND DYNAMIC MODEL 

In this section we will look at the relationship between the 

dynamic model and the frailty model. Assume that the 

intensity function for an individual i  with a frailty iZ and the 

observable intensity process for this individual are as defined 

in (1) and (2). For ease of description we will assume a simple 

single time constant covariate ( 110 )()()( xttt ββα += ). 

And since ]|[ −
ti FZE  is given by equ. (3) we have 

 

)(1

)(1
)()|(

t

tN
tFt

i

i

ti Λ+

+
=

−

−

ξ
ξ

αλ                    (4) 

which can be simplified into  

 

)()()()()()()( 1321

*

1

*

0

−− +++= tNxttNtxttt iii ββββλ
 

Thus the previous number of events comes into the model as 

an additive term, as when a dynamic covariate has been 

included. Therefore the dynamic model may alternatively be 

used instead of frailty model to explain the heterogeneity in the 

data. In the following we describe a simulation study to get a 

better insight into these situations. 

A.  Simulation Study    

This simulation study has been conducted to investigate the 

behavior of the standard deviation of the standardized residual 

processes as a diagnostic tool for assessing the model fit, when 

frailty is present in the true data generating model. 

As mentioned in [6] and [3], a model fit within the Aalen 

class of models can be summarized by the empirical standard 

deviation of the standardized residual processes. If the model 

is correctly specified then these should be close to one at all 

time points. We simulated from a frailty model with a sample 

of size 250 and 100=τ  time points. Two time constant 

binary covariates (i.e. 
1x  and 2x ), and a frailty variable with 

gamma distribution with mean one and variance ξ  were 
included. We used a variety of different values of ξ  but the 
simulation study that is presented here is with 1=ξ  

so )1,1(~ GZ i
. Assume, 

 

)05.005.01.0()(: 21 xxZtAModel ii ++=λ  

 

The frailty iZ  is fixed over time and each individual will 

have the same frailty over the study period. Once the data set 

was generated, the two following models (fixed and dynamic 

models) were fitted to these data assuming no knowledge of 

the right model, 

 

   0 1 1 2 21: ( ) ( ) ( ) ( ) ( ) ( )Model A t t t x t t x tλ β β β= + +  

   
0 1 1 2 2 3

2 : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t x t t x t t D tModel λ β β β β −= + + +  

 

where )( −tD represents the average number of previous 

events in the process, i.e. ttN /)( −
. In addition to above 

simulation, we also simulated from  

 

  21 05.005.01.0)(:1 xxtBModel ++=λ  

21 2.005.01.0)(:2 xxtBModel ++=λ  

 

and fitted each of the following models to the two generated 

data sets  

         )()()()(:1 110 txtttCModel ββλ +=  

        )()()()()()(:2 2110 tRttxtttCModel βββλ ++=  

 

where )(tR  is the residual from regressing )( −tD  on the 

fixed covariate to keep the estimates of the fixed covariates the 

same.  

Fig. 1 shows the mean of the standard deviation of the 

standardized residual processes for 100 simulations. The upper 

panel shows the standard deviation for fitting Model A1 and 

Model A2 to the frailty data (Model A). In the middle and 

lower panel the standard deviation of the standardized residual 

processes for fitting Model C1 and C2 to Model B1 (middle 

panel) and to Model B2 (lower panel) are shown. 

Notice that, when a fixed model (Model A1) is fitted to 

frailty data (Model A) or when a model with less covariates 

(Model C1) was fitted to a data generated with more covariates 

(Model B1 and B2), the standard deviation of the standardized 
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residuals is above one indicating that the fitted model is not 

adequate for these data (Fig. 1, left column). However, the 

standard deviation for fitting the dynamic model C2 to Model 

B1 and B2 is almost one in all time points (right column 

middle and lower plot in Fig. 1). In addition fitting dynamic 

model A2 to frailty data, Model A, results in a standard 

deviation that is close to one. This supports the earlier 

discussion that a dynamic model may alternatively be used 

instead of frailty model. Furthermore, dynamic models can 

also capture heterogeneity induced by a missing covariate as 

we see in Fig. 1, right column. Thus dynamic models may well 

be richer than frailty models.  

 

 

Fig. 1 The empirical standard deviations of standardized residual 
processes for; upper panel: simulate from Model A and fit Model A1 

(left plot), fitting Model A2 (right plot). Middle panel: simulate from 

model B1 and fit C1 (left), fit model C2 (right) and lower panel:  

simulate from B2 and fit C1 (left), fit model C2 (right) 

 

To see what is happening when the misspecified models 

were fitted, we did some calculations to see the expected 

standard deviation values for these models. Fig. 2 shows the 

average of 100 simulations of the empirical (black lines) and 

the expected standard deviation (red lines) for fitting a fixed 

model to frailty data  (right plot), and fitting a model with one 

covariate to data generated  with two covariates (left plot). We 

used the previously defined models (simulate from Model A 

and fit Model A1 and simulate from Model B2 and fit Model 

C1) but with sample size of 500=n . Looking at the figure 

one can see that the lines (empirical and expected) are very 

close to each other and linearly increasing in t  for both fitted 
models indicating that these models did not fit the data well.  

A third form of misspecification is when we fit a dynamic 

model to data generated with frailty (fit Model A2 to data from 

Model A). Unfortunately the algebra required to derive the 

theoretical properties is intractable because the exact times of 

previous events affect regression coefficients. We did work 

through the algebra for event times two and three, where 

)( −tN has only a small number of possibilities, and found 

that the empirical standard deviation of the standardized 

residual closely agreed with the theoretical one. For later event 

times we turned to simulation with the very large sample size 

of 000,100=n  to approximate the expected patterns. Fig. 3 

and 4 show the patterns at 1=ξ  and 1.0=ξ  respectively. 

From the figures one can notice that the standard deviations 

fall initially especially with 1=ξ and then climb back up. 

Although the values are close to one, and the deviations may 

not be noticeable in small samples, nonetheless, in  theory the 

empirical standard deviations do not have expected value  one. 

Being close to one indicate that the model fit the data and 

supports the previous discussion, Section III.  

 

 

Fig. 2 The empirical standard deviations of standardized residual 
processes (black lines) and the large sample expected value (red 

lines) for; right plot: fitting A1 to A. Left plot: simulate   from B2 

and fit C1 

 

Furthermore note that when the missing covariate has little 

effect (i.e. left column middle plot of Fig. 1) then the standard 

deviation will not be far from one, meaning, the fitted model 

still can explain the patterns in the data. Also including the 

interaction term as defined in (5), whether it is the interaction 

between the dynamic covariate and the fixed covariates or 

between the residuals from regressing the dynamic covariate 

on the fixed covariates, had no significant effect on the 

standard deviation of the standardized residual plots. Both give 

good fits to the data (plots not shown here).  

 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:4, 2013 

607International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
4,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/7
34

.p
df



 

 

 

Fig. 3 The empirical standard deviations of standardized residual 

processes for fitting dynamic model to frailty data for 100000=n  

and 1=ξ  

 

We repeated the above simulation study for different sample 

sizes and different parameter values and the same results were 

obtained.  

 

Fig. 4 The empirical standard deviations of standardized residual 

processes for fitting dynamic model to frailty data for 100000=n  

and 1.0=ξ  

IV. DIARRHOEA DATA: BLUE BAY DATA 

As an illustration, we will study the recurrent incidence of 

infant diarrhoea data [3]. The empirical standard deviations of 

the standardized martingale residual processes were calculated 

for three models (Fig. 5): the Aalen model without 

heterogeneity, fixed covariates only (solid line), the Aalen 

model with dynamic covariates (dashed line), and the frailty 

model fitted here (the individual frailty has been estimated 

using routines provided by colleague Mahdi Mohammadi) 

without the interaction term (the dotted line). The fixed and 

dynamic covariates for this data set are presented in [3]. We 

also checked whether the inclusion of the interaction term 

between the dynamic covariates and fixed covariates or the 

interaction between the dynamic residuals and fixed covariates 

have significant effect in the standard deviation of the 

standardized processes. We found it did not make any 

difference.  

From Fig. 5 one can see clearly that the heterogeneity needs 

to be taken into account and there is little difference between 

the fits under the dynamic and frailty approaches. The standard 

deviations of both models are close to one suggesting that each 

specified model is reasonable, although the frailty approach 

may be slightly preferred for these data.  

V. CONCLUSION 

In this paper we studied an alternative modelling approach, 

that accounts for heterogeneity in recurrent event data, to that 

discussed in our previous papers. 

During the earlier papers we concentrated on the dynamic 

modeling approach. This paper introduced frailty modelling, 

which can be considered as another approach to deal with this 

kind of data. Frailty modeling itself is not a focus of this paper. 

Instead we were interested in methods to detect omitted frailty 

and in comparing the frailty and dynamic fits to data.  

 

Fig. 5 Blue Bay data: the empirical standard deviations of 
standardized martingale residual processes for; solid line: fixed 

covariates, dashed line: dynamic covariate and dotted line: frailty 

model 

 

A simulation study suggested that the dynamic model may 

be used instead of frailty model. Also we looked at the 

expected value of the standard deviation of the standardized 

residual processes for fitting different misspecified models and 

compared with the empirical value. We found that the 

empirical and the expected standard deviation of the 

standardized residual processes are very close to each other. 

For the case of fitting a dynamic model to data generated with 

frailty we needed to find )](ˆ[ tE Λ  which depends not just on 

)( −tN  but on the exact times of events over ),0( −t . Thus 

the number of possible combinations quickly becomes 

unmanageable as t  increases (Section III, A). Hence we did a 
very large simulation study to approximate the expected 

patterns.  

In the final section we used the Blue Bay data as an 

illustration to compare the two procedures where we found 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:4, 2013 

608International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
4,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/7
34

.p
df



 

 

that both approaches took the heterogeneity into account and 

produce residual standard deviations close to each other.  
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