Search results for: earthquake prediction
1015 Identifying Temporary Housing Main Vertexes through Assessing Post-Disaster Recovery Programs
Authors: S. M. Amin Hosseini, Oriol Pons, Carmen Mendoza Arroyo, Albert de la Fuente
Abstract:
In the aftermath of a natural disaster, the major challenge most cities and societies face, regardless of their diverse level of prosperity, is to provide temporary housing (TH) for the displaced population (DP). However, the features of TH, which have been applied in previous recovery programs, greatly varied from case to case. This situation demonstrates that providing temporary accommodation for DP in a short period time and usually in great numbers is complicated in terms of satisfying all the beneficiaries’ needs, regardless of the societies’ welfare levels. Furthermore, when previously used strategies are applied to different areas, the chosen strategies are most likely destined to fail, unless the strategies are context and culturally based. Therefore, as the population of disaster-prone cities are increasing, decision-makers need a platform to help to determine all the factors, which caused the outcomes of the prior programs. To this end, this paper aims to assess the problems, requirements, limitations, potential responses, chosen strategies, and their outcomes, in order to determine the main elements that have influenced the TH process. In this regard, and in order to determine a customizable strategy, this study analyses the TH programs of five different cases as: Marmara earthquake, 1999; Bam earthquake, 2003; Aceh earthquake and tsunami, 2004; Hurricane Katrina, 2005; and, L’Aquila earthquake, 2009. The research results demonstrate that the main vertexes of TH are: (1) local characteristics, including local potential and affected population features, (2) TH properties, which needs to be considered in four phases: planning, provision/construction, operation, and second life, and (3) natural hazards impacts, which embraces intensity and type. Accordingly, this study offers decision-makers the opportunity to discover the main vertexes, their subsets, interactions, and the relation between strategies and outcomes based on the local conditions of each case. Consequently, authorities may acquire the capability to design a customizable method in the face of complicated post-disaster housing in the wake of future natural disasters.
Keywords: Post-disaster temporary accommodation, urban resilience, natural disaster, local characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361014 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.
Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701013 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391012 A Combined Neural Network Approach to Soccer Player Prediction
Authors: Wenbin Zhang, Hantian Wu, Jian Tang
Abstract:
An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.
Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37611011 Water Demand Prediction for Touristic Mecca City in Saudi Arabia using Neural Networks
Authors: Abdel Hamid Ajbar, Emad Ali
Abstract:
Saudi Arabia is an arid country which depends on costly desalination plants to satisfy the growing residential water demand. Prediction of water demand is usually a challenging task because the forecast model should consider variations in economic progress, climate conditions and population growth. The task is further complicated knowing that Mecca city is visited regularly by large numbers during specific months in the year due to religious occasions. In this paper, a neural networks model is proposed to handle the prediction of the monthly and yearly water demand for Mecca city, Saudi Arabia. The proposed model will be developed based on historic records of water production and estimated visitors- distribution. The driving variables for the model include annuallyvarying variables such as household income, household density, and city population, and monthly-varying variables such as expected number of visitors each month and maximum monthly temperature.Keywords: Water demand forecast; Neural Networks model; water resources management; Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121010 Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials
Authors: Shubha P Bhat, Krishnamurthy, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.Keywords: DOF, Space structures, Acceleration, Excitation, Smart structure, Vibration, Isolation, Earthquakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381009 Software Reliability Prediction Model Analysis
Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.
Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16791008 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole
Authors: Hasan Keshavarzian, Tayebeh Nesari
Abstract:
Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.Keywords: Rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11081007 Identification, Prediction and Detection of the Process Fault in a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure algorithm. Then, by using this method, we obtained 3 distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented. At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.Keywords: Cement Rotary Kiln, Fault Detection, Delay Estimation Method, Locally Linear Neuro Fuzzy Model, LOLIMOT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721006 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
Authors: Omer Nebil Yaveroglu, Tolga Can
Abstract:
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16121005 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: Big data, building-value analysis, machine learning, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11621004 Assessment the Effect of Setback in Height of Frame on Reinforcement Structures
Authors: Farshad Mehrabi, Ali kheirodin, Mohsen Gerami
Abstract:
Ambiguities in effects of earthquake on various structures in all earthquake codes would necessitate more study and research concerning influential factors on dynamic behavior. Previous studies which were done on different features in different buildings play a major role in the type of response a structure makes to lateral vibrations. Diagnosing each of these irregularities can help structure designers in choosing appropriate setbacks for decreasing possible damages. Therefore vertical setback is one of the irregularity factors in the height of the building where can be seen in skyscrapers and hotels. Previous researches reveal notable changes in the place of these setbacks showing dynamic response of the structure. Consequently analyzing 48 models of concrete frames for 3, 6 and 9 stories heights with three different bays in general shape of a surface decline by height have been constructed in ETABS2000 software, and then the shape effect of each and every one of these frames in period scale has been discussed. The result of this study reveals that not only mass, stiffness and height but also shape of the frame is influential.Keywords: period, concrete frame, irregularity in height, decrease in plan surface, dynamic behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13971003 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35971002 Capability Prediction of Machining Processes Based on Uncertainty Analysis
Authors: Hamed Afrasiab, Saeed Khodaygan
Abstract:
Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.Keywords: Process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12331001 Genetic Algorithm based Optimization approach for MR Dampers Fuzzy Modeling
Authors: Behnam Mehrkian, Arash Bahar, Ali Chaibakhsh
Abstract:
Magneto-rheological (MR) fluid damper is a semiactive control device that has recently received more attention by the vibration control community. But inherent hysteretic and highly nonlinear dynamics of MR fluid damper is one of the challenging aspects to employ its unique characteristics. The combination of artificial neural network (ANN) and fuzzy logic system (FLS) have been used to imitate more precisely the behavior of this device. However, the derivative-based nature of adaptive networks causes some deficiencies. Therefore, in this paper, a novel approach that employ genetic algorithm, as a free-derivative algorithm, to enhance the capability of fuzzy systems, is proposed. The proposed method used to model MR damper. The results will be compared with adaptive neuro-fuzzy inference system (ANFIS) model, which is one of the well-known approaches in soft computing framework, and two best parametric models of MR damper. Data are generated based on benchmark program by applying a number of famous earthquake records.Keywords: Benchmark program, earthquake record filtering, fuzzy logic, genetic algorithm, MR damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21151000 Blood Glucose Measurement and Analysis: Methodology
Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali
Abstract:
There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.Keywords: Invasive, linear, near-infrared (Nir), non-invasive, non-linear, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855999 An Integrated Predictor for Cis-Regulatory Modules
Authors: Darby Tien-Hao Chang, Guan-Yu Shiu, You-Jie Sun
Abstract:
Various cis-regulatory module (CRM) predictors have been proposed in the last decade. Several well-established CRM predictors adopted different categories of prediction strategies, including window clustering, probabilistic modeling and phylogenetic footprinting. Appropriate integration of them has a potential to achieve high quality CRM prediction. This study analyzed four existing CRM predictors (ClusterBuster, MSCAN, CisModule and MultiModule) to seek a predictor combination that delivers a higher accuracy than individual CRM predictors. 465 CRMs across 140 Drosophila melanogaster genes from the RED fly database were used to evaluate the integrated CRM predictor proposed in this study. The results show that four predictor combinations achieved superior performance than the best individual CRM predictor.
Keywords: Cis-regulatory module, transcription factor binding site.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648998 Masonry CSEB Building Models under Shaketable Testing-An Experimental Study
Authors: Lakshmi Keshav, V. G. Srisanthi
Abstract:
In this experimental investigation shake table tests were conducted on two reduced models that represent normal single room building constructed by Compressed Stabilized Earth Block (CSEB) from locally available soil. One model was constructed with earthquake resisting features (EQRF) having sill band, lintel band and vertical bands to control the building vibration and another one was without Earthquake Resisting Features. To examine the seismic capacity of the models particularly when it is subjected to long-period ground motion by large amplitude by many cycles of repeated loading, the test specimen was shaken repeatedly until the failure. The test results from Hi-end Data Acquisition system show that model with EQRF behave better than without EQRF. This modified masonry model with new material combined with new bands is used to improve the behavior of masonry building.Keywords: Earth Quake Resisting Features, Compressed Stabilized Earth Blocks, Masonry structures, Shake table testing, Horizontal and vertical bands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733997 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation
Authors: M. Elassaly
Abstract:
Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095996 Development of Accident Predictive Model for Rural Roadway
Authors: Fajaruddin Mustakim, Motohiro Fujita
Abstract:
This paper present the study carried out of accident analysis, black spot study and to develop accident predictive models based on the data collected at rural roadway, Federal Route 50 (F050) Malaysia. The road accident trends and black spot ranking were established on the F050. The development of the accident prediction model will concentrate in Parit Raja area from KM 19 to KM 23. Multiple non-linear regression method was used to relate the discrete accident data with the road and traffic flow explanatory variable. The dependent variable was modeled as the number of crashes namely accident point weighting, however accident point weighting have rarely been account in the road accident prediction Models. The result show that, the existing number of major access points, without traffic light, rise in speed, increasing number of Annual Average Daily Traffic (AADT), growing number of motorcycle and motorcar and reducing the time gap are the potential contributors of increment accident rates on multiple rural roadway.Keywords: Accident Trends, Black Spot Study, Accident Prediction Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281995 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.
Keywords: Base shear force, fundamental period, epicentral distance, uncertainty, lognormal variable, statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299994 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.
Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525993 Evaluation of Context Information for Intermittent Networks
Authors: S. Balaji, E. Golden Julie, Y. Harold Robinson
Abstract:
The context aware adaptive routing protocol is presented for unicast communication in intermittently connected mobile ad hoc networks (MANETs). The selection of the node is done by the Kalman filter prediction theory and it also makes use of utility functions. The context aware adaptive routing is defined by spray and wait technique, but the time consumption in delivering the message is too high and also the resource wastage is more. In this paper, we describe the spray and focus routing scheme for avoiding the existing problems.
Keywords: Context aware adaptive routing, Kalman filter prediction, spray and wait, spray and focus, intermittent networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912992 Evaluation of Chiller Power Consumption Using Grey Prediction
Authors: Tien-Shun Chan, Yung-Chung Chang, Cheng-Yu Chu, Wen-Hui Chen, Yuan-Lin Chen, Shun-Chong Wang, Chang-Chun Wang
Abstract:
98% of the energy needed in Taiwan has been imported. The prices of petroleum and electricity have been increasing. In addition, facility capacity, amount of electricity generation, amount of electricity consumption and number of Taiwan Power Company customers have continued to increase. For these reasons energy conservation has become an important topic. In the past linear regression was used to establish the power consumption models for chillers. In this study, grey prediction is used to evaluate the power consumption of a chiller so as to lower the total power consumption at peak-load (so that the relevant power providers do not need to keep on increasing their power generation capacity and facility capacity). In grey prediction, only several numerical values (at least four numerical values) are needed to establish the power consumption models for chillers. If PLR, the temperatures of supply chilled-water and return chilled-water, and the temperatures of supply cooling-water and return cooling-water are taken into consideration, quite accurate results (with the accuracy close to 99% for short-term predictions) may be obtained. Through such methods, we can predict whether the power consumption at peak-load will exceed the contract power capacity signed by the corresponding entity and Taiwan Power Company. If the power consumption at peak-load exceeds the power demand, the temperature of the supply chilled-water may be adjusted so as to reduce the PLR and hence lower the power consumption.Keywords: Gery system theory, grey prediction, chller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577991 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756990 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm
Authors: S. Esfandeh, M. Sedighizadeh
Abstract:
Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.Keywords: Weather, Climate, PSO, Prediction, Meteorological
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075989 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach
Authors: E. Nemati Lay, M. Peymani, E. Sanjari
Abstract:
Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.
Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243988 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379987 High Capacity Data Hiding based on Predictor and Histogram Modification
Authors: Hui-Yu Huang, Shih-Hsu Chang
Abstract:
In this paper, we propose a high capacity image hiding technology based on pixel prediction and the difference of modified histogram. This approach is used the pixel prediction and the difference of modified histogram to calculate the best embedding point. This approach can improve the predictive accuracy and increase the pixel difference to advance the hiding capacity. We also use the histogram modification to prevent the overflow and underflow. Experimental results demonstrate that our proposed method within the same average hiding capacity can still keep high quality of image and low distortionKeywords: data hiding, predictor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884986 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed
Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang
Abstract:
In this study, a physically-based, modeling framework was developed to predict saturated hydraulic conductivity (Ksat) dynamics in the Clear Creek Watershed (CCW), Iowa. The modeling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the Ksat field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured Ksat values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of Ksat variability in CCW due to the seasonal changes in climate and land use activities.
Keywords: Saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548