Search results for: dummy variables
945 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models, on two different real-world electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.
Keywords: EHR, Machine Learning, imputation, laboratory variables, algorithmic bias.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173944 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419943 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique
Authors: A. Jabbari, M. Shakeri, A. Nabavi
Abstract:
In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503942 A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix
Authors: K. Krishna Veni, S. Raja Balachandar
Abstract:
This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.
Keywords: 0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857941 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780940 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design
Authors: A. Thakur, P. S. Panesar, M. S. Saini
Abstract:
Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.
Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323939 Self-Efficacy Perceptions and the Attitudes of Prospective Teachers towards Assessment and Evaluation
Authors: Münevver Başman, Ezel Tavşancıl
Abstract:
Making the right decisions about students depends on teachers’ use of the assessment and evaluation techniques effectively. In order to do that, teachers should have positive attitudes and adequate self-efficacy perception towards assessment and evaluation. The purpose of this study is to investigate relationship between self-efficacy perception and the attitudes of prospective teachers towards assessment and evaluation and what kind of differences these issues have in terms of a variety of demographic variables. The study group consisted of 277 prospective teachers who have been studying in different departments of Marmara University, Faculty of Education. In this study, ‘Personal Information Form’, ‘A Perceptual Scale for Measurement and Evaluation of Prospective Teachers Self-Efficacy in Education’ and ‘Attitudes toward Educational Measurement Inventory’ are applied. As a result, positive correlation was found between self-efficacy perceptions and the attitudes of prospective teachers towards assessment and evaluation. Considering different departments, there is a significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them. However, considering variables of attending statistics class and the class types at the graduated high school, there is no significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them.Keywords: Attitude, perception, prospective teacher, self-efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559938 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: Additive models, local polynomial regression, residuals, mean square error, variable selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010937 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network
Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem
Abstract:
In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787936 The Relationship between Personality Characteristics and Driving Behavior
Authors: Bahram Esmaeili, Hamid Reza Imani Far, Hossein Hosseini, Mohammad Sharifi
Abstract:
The present study investigated the relationship between personality characteristics of drivers and the number and amount of fines they have in a year .This study was carried out on 120 male taxi drivers that worked at least seven hours in a day in Lamerd - a city in the south of IRAN. Subjects were chosen voluntarily among those available. Predictive variables were the NEO –five great personality factors (1. conscientiousness 2. Openness to Experience 3.Neuroticism4 .Extraversion 5.Agreeableness ) thecriterion variables were the number and amount of fines the drivers have had the last three years. the result of regression analysis showed that conscientiousness factor was able to negatively predict the number and amount of financial fines the drivers had during the last three years. The openness factor positively predicted the number of fines they had in last 3 years and the amount of financial fines during the last year. The extraversion factor both meaningfully and positively could predict only the amount of financial fines they had during the last year. Increasing age was associated with decreasing driving offenses as well as financial loss.The findings can be useful in recognizing the high-risk drivers and leading them to counseling centers .They can also be used to inform the drivers about their personality and it’s relation with their accident rate. Such criteria would be of great importance in employing drivers in different places such as companies, offices etc…Keywords: drivers, financial fines, neo five-factor personality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465935 Simulation Model for Optimizing Energy in Supply Chain Management
Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari
Abstract:
In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.
Keywords: Supply chain management, green supply chain management, system dynamics, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909934 Consumers’ Perceptions of Noncommunicable Diseases and Perceived Product Value Impacts on Healthy Food Purchasing Decisions
Authors: Khatesiree Sripoothon, Usanee Sengpanich, Rattana Sittioum
Abstract:
The objective of this study is to examine the factors influencing consumer purchasing decisions about healthy food. This model consists of two latent variables: Consumer Perception relating to NCDs and Consumer Perceived Product Value. The study was conducted in the northern provinces of Thailand, which are popular with tourists and have received support from the government for health and wellness tourism. A survey was used as the data collection method, and the questionnaire was applied to 385 consumers. An accidental sampling method was used to identify the sample. The statistics of frequency, percentage, mean, and structural equation model were used to analyze the data obtained. Additionally, all factors had a significant positive influence on healthy food purchasing decisions (p<0.001) and were predictive of healthy food purchasing decisions at 46.20% (R2=0.462). Also, these findings seem to underline the supposition that consumer perceptions of NCDs and perceived product value are key variables that strengthen the competitive effects of healthy-friendly business entrepreneurs. Moreover, it reduces the countries' public health costs for treating patients with the disease of NCDs in Thailand.
Keywords: healthy food, perceived product value, perception of noncommunicable diseases, purchasing decisions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561933 A Study on the Comparison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test
Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim
Abstract:
In rapid industrial development, the demand for high-strength and lightweight materials have been increased. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order and thickness. Thus, the hardness and strength of CFRP depends much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75° and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75° and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Bending Test, Infrared Camera, Composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029932 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T-intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.
Keywords: Accidents Prediction Models (APMs), Generalized Linear Model (GLM), T-intersections, Oman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063931 The Effect of Smartphones on Human Health Relative to User’s Addiction: A Study on a Wide Range of Audiences in Jordan
Authors: T. Qasim, M. Obeidat, S. Al-Sharairi
Abstract:
The objective of this study is to investigate the effect of the excessive use of smartphones. Smartphones have enormous effects on the human body in that some musculoskeletal disorders (MSDs) and health problems might evolve. These days, there is a wide use of the smartphones among all age groups of society, thus, the focus on smartphone effects on human behavior and health, especially on the young and elderly people, becomes a crucial issue. This study was conducted in Jordan on smartphone users for different genders and ages, by conducting a survey to collect data related to the symptoms and MSDs that are resulted from the excessive use of smartphones. A total of 357 responses were used in the analysis. The main related symptoms were numbness, fingers pain, and pain in arm, all linked to age and gender for comparative reasons. A statistical analysis was performed to find the effects of extensive usage of a smartphone for long periods of time on the human body. Results show that the significant variables were the vision problems and the time spent when using the smartphone that cause vision problems. Other variables including age of user and ear problems due to the use of the headsets were found to be a border line significant.Keywords: Smartphone, age group, musculoskeletal disorders (MSDs), health problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050930 Advantages of Vibration in the GMAW Process for Improving the Quality and Mechanical Properties
Authors: C. A. C. Castro, D. C. Urashima, E. P. Silva, P. M. L.Silva
Abstract:
Since 1920, the industry has almost completely changed the rivets production techniques for the manufacture of permanent welding join production of structures and manufacture of other products. The welding arc is the process more widely used in industries. This is accomplished by the heat of an electric arc which melts the base metal while the molten metal droplets are transferred through the arc to the welding pool, protected from the atmosphere by a gas curtain. The GMAW (Gas metal arc welding) process is influenced by variables such as: current, polarity, welding speed, electrode: extension, position, moving direction; type of joint, welder's ability, among others. It is remarkable that the knowledge and control of these variables are essential for obtaining satisfactory quality welds, knowing that are interconnected so that changes in one of them requiring changes in one or more of the other to produce the desired results. The optimum values are affected by the type of base metal, the electrode composition, the welding position and the quality requirements. Thus, this paper proposes a new methodology, adding the variable vibration through a mechanism developed for GMAW welding, in order to improve the mechanical and metallurgical properties which does not affect the ability of the welder and enables repeatability of the welds made. For confirmation metallographic analysis and mechanical tests were made.Keywords: HAZ, GMAW, vibration, welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808929 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424928 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: Bootstrap, Edgeworth approximation, independent and Identical distributed, quantile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441927 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm
Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari
Abstract:
In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906926 Assessing Local Knowledge Dynamics: Regional Knowledge Economy Indicators
Authors: Francesca Affortunato, Edgardo Bucciarelli, Mariateresa Ciommi, Gianfranco Giulioni
Abstract:
The paper represents a reflection on how to select proper indicators to assess the progress of regional contexts towards a knowledge-based society. Taking the first research methodologies elaborated at an international level (World Bank, OECD, etc.) as a reference point, this work intends to identify a set of indicators of the knowledge economy suitable to adequately understand in which manner and to which extent the territorial development dynamics are correlated with the knowledge-base of the considered local society. After a critical survey of the variables utilized within other approaches adopted by international or national organizations, this paper seeks to elaborate a framework of variables, named Regional Knowledge Economy Indicators (ReKEI), necessary to describe the knowledge-based relations of subnational socio-economic contexts. The realization of this framework has a double purpose: an analytical one consisting in highlighting the regional differences in the governance of knowledge based processes, and an operative one consisting in providing some reference parameters for contributing to increasing the effectiveness of those economic policies aiming at enlarging the knowledge bases of local societies.
Keywords: Knowledge economy, knowledge society, information society, regional innovation system, territorial competitiveness, local development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738925 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate
Authors: F. L. Motta, M. H. A. Santana
Abstract:
Humic acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm empty fruit bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.
Keywords: Empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165924 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246923 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155922 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach
Authors: L. L. Ivy-Yap, H. A. Bekhet
Abstract:
As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationarity of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modelled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.
Keywords: Co-integration, Elasticity, Granger causality, Malaysia, Residential electricity consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4102921 Association between Job Satisfaction, Motivation and Five Factors of Organizational Citizenship Behavior
Authors: K. Mushtaq, M. Umar
Abstract:
The research aims to study the association between job satisfaction, motivation and the five factors of organizational citizenship behavior (i.e. Altruism, Conscientiousness, Sportsmanship, Courtesy and Civic virtue) among Public Sector Employees in Pakistan. In this research Structure Equation Modeling with confirmatory factor analysis was used to test the relationship between two independent and five dependent variables. Data was collected through questionnaire survey from 152 Public Servants Working in Gujrat District-Pakistan in different capacities. Stratified Random Sampling Technique was used to conduct this survey. The results of the study indicate that five factors of OCB have positive significant relation with both motivation and job satisfaction except the relationship of Civic Virtue with Motivation. The research findings implicate that factors other than motivation and job satisfaction may also affect OCB. Likewise, all the five factors of OCB may not be present in all populations. Thus, Managers must concentrate on increasing motivation and job satisfaction to increase OCB. Furthermore, the present research gives a direction to future researchers to use more independent variables (e.g. Culture, leadership, workplace environment, various job attitudes, types of motivation, etc.) on different types of populations with larger sample size in order to find the reasons behind insignificant relationship of civic virtue with Motivation in the research in hand and to generalize the tested model.Keywords: Five Factors of Organizational Citizenship Behavior (OCB), Motivation, Job Satisfaction, Public Sector Employees in Pakistan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167920 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948919 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions
Authors: Jamal S. Yassin
Abstract:
This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.
Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736918 Measuring Relative Efficiency of Korean Construction Company using DEA/Window
Authors: Jung-Lo Park, Sung-Sik Kim, Sun-Young Choi, Ju-Hyung Kim, Jae-Jun Kim
Abstract:
Sub-prime mortgage crisis which began in the US is regarded as the most economic crisis since the Great Depression in the early 20th century. Especially, hidden problems on efficient operation of a business were disclosed at a time and many financial institutions went bankrupt and filed for court receivership. The collapses of physical market lead to bankruptcy of manufacturing and construction businesses. This study is to analyze dynamic efficiency of construction businesses during the five years at the turn of the global financial crisis. By discovering the trend and stability of efficiency of a construction business, this study-s objective is to improve management efficiency of a construction business in the ever-changing construction market. Variables were selected by analyzing corporate information on top 20 construction businesses in Korea and analyzed for static efficiency in 2008 and dynamic efficiency between 2006 and 2010. Unlike other studies, this study succeeded in deducing efficiency trend and stability of a construction business for five years by using the DEA/Window model. Using the analysis result, efficient and inefficient companies could be figured out. In addition, relative efficiency among DMU was measured by comparing the relationship between input and output variables of construction businesses. This study can be used as a literature to improve management efficiency for companies with low efficiency based on efficiency analysis of construction businesses.Keywords: Construction Company, DEA, DEA/Window, Efficiency Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984917 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model
Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman
Abstract:
The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506916 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.
Keywords: Fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674