Search results for: Stochastic network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2990

Search results for: Stochastic network

2720 Finite Element Analysis and Feasibility of Simple Stochastic Modeling in the Analysis of Fissuring in Grains during Soaking

Authors: Jonathan H. Perez, Fumihiko Tanaka, Daisuke Hamanaka, Toshitaka Uchino

Abstract:

A finite element analysis was conducted to determine the effect of moisture diffusion and hygroscopic swelling in rice. A parallel simple stochastic modeling was performed to predict the number of grains cracked as a result of moisture absorption and hygroscopic swelling. Rice grains were soaked in thermally (25 oC) controlled water and then tested for compressive stress. The destructive compressive stress tests revealed through compressive stress calculation that the peak force required to cause cracking in grains soaked in water reduced with time as soaking duration was extended. Results of the experiment showed that several grains had their value of the predicted compressive stress below the von Mises stress and were interpreted as grains which become cracked and/or broke during soaking. The technique developed in this experiment will facilitate the approximation of the number of grains which will crack during soaking.

Keywords: Cracking, Finite element analysis, hygroscopic swelling, moisture diffusion, von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2719 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation

Authors: Shuhe Shao

Abstract:

This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.

Keywords: BP neural network, sports aerobics, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2718 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning

Authors: K´evin Fernagut, Olivier Flauzac, Erick M. Gallegos R, Florent Nolot

Abstract:

The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.

Keywords: Containerization, containers, cyber-security, cyber-attacks, isolation, performance, security, virtualization, virtual machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
2717 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model

Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar

Abstract:

During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.

Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2716 Ontology Development of e-Learning Moodle for Social Learning Network Analysis

Authors: Norazah Yusof, Andi Besse Firdausiah Mansur

Abstract:

Social learning network analysis has drawn attention for most researcher on e-learning research domain. This is due to the fact that it has the capability to identify the behavior of student during their social interaction inside e-learning. Normally, the social network analysis (SNA) is treating the students' interaction merely as node and edge with less meaning. This paper focuses on providing an ontology structure of e-learning Moodle that can enrich the relationships among students, as well as between the students and the teacher. This ontology structure brings great benefit to the future development of e-learning system.

Keywords: Ontology, e-learning, © Learning Network, Moodle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
2715 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: Wireless sensor network, mobile sensor node, relay of sensing data, virtual rail, residual energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
2714 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.

Keywords: Car parking monitoring, sensor node, wireless sensor network, network protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
2713 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Han Xiao, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
2712 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
2711 Performance Analysis of a Discrete-time GeoX/G/1 Queue with Single Working Vacation

Authors: Shan Gao, Zaiming Liu

Abstract:

This paper treats a discrete-time batch arrival queue with single working vacation. The main purpose of this paper is to present a performance analysis of this system by using the supplementary variable technique. For this purpose, we first analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. Next, we present the stationary distributions of the system length as well as some performance measures at random epochs by using the supplementary variable method. Thirdly, still based on the supplementary variable method we give the probability generating function (PGF) of the number of customers at the beginning of a busy period and give a stochastic decomposition formulae for the PGF of the stationary system length at the departure epochs. Additionally, we investigate the relation between our discretetime system and its continuous counterpart. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system.

Keywords: Discrete-time queue, batch arrival, working vacation, supplementary variable technique, stochastic decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
2710 Neural Network Controller for Mobile Robot Motion Control

Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic

Abstract:

In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.

Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332
2709 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
2708 Performance Analysis of MC-SS for the Indoor BPLC Systems

Authors: Justinian Anatory

Abstract:

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.

Keywords: Communication channel model; Broadband Powerlinecommunication; Branched network; OFDM; Delay Spread, MCSS;impulsive noise; load impedance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
2707 A Redundant Dynamic Host Configuration Protocol for Collaborating Embedded Systems

Authors: M. Schukat, M.P. Cullen, D. O'Beirne

Abstract:

This paper describes a UDP over IP based, server-oriented redundant host configuration protocol (RHCP) that can be used by collaborating embedded systems in an ad-hoc network to acquire a dynamic IP address. The service is provided by a single network device at a time and will be dynamically reassigned to one of the other network clients if the primary provider fails. The protocol also allows all participating clients to monitor the dynamic makeup of the network over time. So far the algorithm has been implemented and tested on an 8-bit embedded system architecture with a 10Mbit Ethernet interface.

Keywords: Ad-Hoc Networks, Collaborating Embedded Systems, Dynamic Host Configuration, Redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
2706 Towards Security in Virtualization of SDN

Authors: Wanqing You, Kai Qian, Xi He, Ying Qian

Abstract:

In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get furtherdiscussions among the security of SDN virtualization.

Keywords: FlowVisor, Network virtualization, Potential threats, Possible solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
2705 Security Threat and Countermeasure on 3G Network

Authors: Dongwan Kang, Joohyung Oh, Chaetae Im

Abstract:

Recent communications environment significantly expands the mobile environment. The popularization of smartphones with various mobile services has emerged, and smartphone users are rapidly increasing. Because of these symptoms, existing wired environment in a variety of mobile traffic entering to mobile network has threatened the stability of the mobile network. Unlike traditional wired infrastructure, mobile networks has limited radio resources and signaling procedures for complex radio resource management. So these traffic is not a problem in wired networks but mobile networks, it can be a threat. In this paper, we analyze the security threats in mobile networks and provide direction to solve it.

Keywords: 3G, Core Network Security, GTP, Mobile NetworkSecurity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
2704 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations

Authors: Sandeep P. Abhang, Girish V. Chowdhay

Abstract:

This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.

Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
2703 A Model for Business Network Governance: Case Study in the Pharmaceutical Industry

Authors: Emil Crişan, Matthias Klumpp

Abstract:

This paper discusses the theory behind the existence of an idealistic model for business network governance and uses a clarifying case-study, containing governance structures and processes within a business network framework. The case study from a German pharmaceutical industry company complements existing literature by providing a comprehensive explanation of the relations between supply chains and business networks, and also between supply chain management and business network governance. Supply chains and supply chain management are only one side of the interorganizational relationships and ensure short-term performance, while real-world governance structures are needed for ensuring the long-term existence of a supply chain. Within this context, a comprehensive model for business governance is presented. An interesting finding from the case study is that multiple business network governance systems co-exist within the evaluated supply chain.

Keywords: Business network, pharmaceutical industry, supply chain governance, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
2702 Sociological Impact on Education An Analytical Approach Through Artificial Neural network

Authors: P. R. Jayathilaka, K.L. Jayaratne, H.L. Premaratne

Abstract:

This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors.

Keywords: Education, Fuzzy, neural network, prediction, Sociology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
2701 Performance Analysis of Round Trip Delay Time in Practical Wireless Network for Telemanagement

Authors: El Miloud Ar Reyouchi, Kamal Ghoumid, Koutaiba Ameziane, Otman El Mrabet, Slimane Mekaoui

Abstract:

In this paper we focus on the Round Trip Delay (RTD) time measurement technique which is an easy way to obtain the operating condition information in wireless network (WN). RTD measurement is affected by various parameters of wireless network. We illustrate how these RTD parameters vary (in a telemanagement application) versus distance, baud rates, number of hops, between nodes, using radio modem & router unit as a means of transmission and wireless routing.

Keywords: Wireless Network, Round Trip Delay, Radio modem, Router.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3889
2700 Hopfield Network as Associative Memory with Multiple Reference Points

Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato

Abstract:

Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.

Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
2699 Neural Network Based Predictive DTC Algorithm for Induction Motors

Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad

Abstract:

In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.

Keywords: Neural Networks, Predictive DTC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
2698 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
2697 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear types of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: Dynamic algorithm, Load imbalance, Mapping, Task scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
2696 Improving Multi-storey Building Sensor Network with an External Hub

Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis

Abstract:

Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.

Keywords: Wireless sensor networks, radio propagation, building monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
2695 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
2694 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
2693 Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets

Authors: Laura Lukmanto, Harya Widiputra, Lukas

Abstract:

Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.

Keywords: complex dynamic relationship, dynamic interaction network, interactive stock markets, stock market interdependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
2692 A Practical Approach for Electricity Load Forecasting

Authors: T. Rashid, T. Kechadi

Abstract:

This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.

Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2691 Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process

Authors: Sheng-Hong Pong, Herng-Yu Huang, Yi-Ju Lee, Shih-Hsuan Chiu

Abstract:

In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.

Keywords: back-propagation, identification, neural network, penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277