Search results for: Poiseuille-Rayleigh-Benard flow
1998 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation
Authors: Abhisek Sarkar, Abhimanyu Gaur
Abstract:
In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.
Keywords: Attractor, Bifurcation, Energy cascade, Energy spectra, Intermittence, Vortex stretching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621997 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.
Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551996 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines
Authors: Humanyun Zahir, Irtsam Ghazi
Abstract:
This paper outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter is presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.
Keywords: Magnetic Induction, Flow meter, Faradays law, Immersion, Cathodic protection, Anode, Cathode. Flange, Grounding, Plant information management system, Electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26781995 Heat Transfer Analysis of Rectangular Channel Plate Heat Sink
Authors: Zhang Lei, Liu Min, Liu Botao
Abstract:
In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.Keywords: heat transfer, heat sink, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18401994 Heat Transfer Characteristics on Blade Tip with Unsteady Wake
Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho
Abstract:
Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.
Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16781993 Equivalent Transformation for Heterogeneous Traffic Cellular Automata
Authors: Shih-Ching Lo
Abstract:
Understanding driving behavior is a complicated researching topic. To describe accurate speed, flow and density of a multiclass users traffic flow, an adequate model is needed. In this study, we propose the concept of standard passenger car equivalent (SPCE) instead of passenger car equivalent (PCE) to estimate the influence of heavy vehicles and slow cars. Traffic cellular automata model is employed to calibrate and validate the results. According to the simulated results, the SPCE transformations present good accuracy.Keywords: traffic flow, passenger car equivalent, cellular automata
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101992 Analysis of Air-Water Two-Phase Flow in a 3x3 Rod Bundle
Authors: Pei-Syuan Ruan, Ya-Chi Yu, Shao-Wen Chen, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih
Abstract:
This study investigated the void fraction characteristics under low superficial gas velocity (Jg) and low superficial fluid velocity (Jf) conditions in a 3x3 rod bundle geometry. Three arrangements of conductivity probes were set to measure the void fraction at various cross-sectional regions, including rod-gap, sub-channel and rod-wall regions. The experimental tests were performed under the flow conditions of Jg = 0-0.236 m/s and Jf = 0-0.142 m/s, and the time-averaged void fractions were recorded at each flow condition. It was observed that while the superficial gas velocity increases, the small bubbles started to cluster together and become big bubbles. As the superficial fluid velocity increases, the local void fractions of the three test regions will get closer and the bubble distribution will be more uniform across the cross section.
Keywords: Conductivity probes, rod bundles, two-phase flow, void fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5561991 Numerical Investigation of Non-Newtonians Fluids Flows between Two Rotating Cylinders Using Lattice Boltzmann Method
Authors: S. Khali, R. Nebbali, K. Bouhadef
Abstract:
A numerical investigation is performed for non Newtonian fluids flow between two concentric cylinders. The D2Q9 lattice Boltzmann model developed from the Bhatangar-Gross-Krook (LBGK) approximation is used to obtain the flow field for fluids obeying to the power-law model. The inner and outer cylinders rotate in the same and the opposite direction while the end walls are maintained at rest. The combined effects of the Reynolds number (Re) of the inner and outer cylinders, the radius ratio (η) as well as the power-law index (n) on the flow characteristics are analyzed for an annular space of a finite aspect ratio (Γ). Two flow modes are obtained: a primary mode (laminar stable regime) and a secondary mode (laminar unstable regime). The so obtained flow structures are different from one mode to another. The transition critical Reynolds number Rec from the primary to the secondary mode is analyzed for the co-courant and counter-courant flows. This critical value increases as n increases. The prediction of the swirling flow of non Newtonians fluids in axisymmetric geometries is shown in the present work.
Keywords: Taylor-Couette flows, non Newtonian fluid, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27301990 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator
Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang
Abstract:
Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.
Keywords: Unsteady flow, axial turbine, wake, aerodynamic force, loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7951989 Numerical Simulation of the Flow Field around a Vertical Flat Plate of Infinite Extent
Authors: Marco Raciti Castelli, Paolo Cioppa, Ernesto Benini
Abstract:
This paper presents a CFD analysis of the flow field around a thin flat plate of infinite span inclined at 90° to a fluid stream of infinite extent. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a bluff body invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested. Flow field characteristics in the neighborhood of the flat plate have been investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a two-dimensional vertical flat plate.Keywords: CFD, vertical flat plate, aerodynamic force
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26301988 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section
Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie
Abstract:
The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.Keywords: Contraction, Electroviscous, Microfluidic, Numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17811987 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics
Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon
Abstract:
The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.
Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5741986 Robust Design of Electroosmosis Driven Self-Circulating Micromixer for Biological Applications
Authors: Bahram Talebjedi, Emily Earl, Mina Hoorfar
Abstract:
One of the issues that arises with microscale lab-on-a-chip technology is that the laminar flow within the microchannels limits the mixing of fluids. To combat this, micromixers have been introduced as a means to try and incorporate turbulence into the flow to better aid the mixing process. This study presents an electroosmotic micromixer that balances vortex generation and degeneration with the inlet flow velocity to greatly increase the mixing efficiency. A comprehensive parametric study was performed to evaluate the role of the relevant parameters on the mixing efficiency. It was observed that the suggested micromixer is perfectly suited for biological applications due to its low pressure drop (below 10 Pa) and low shear rate. The proposed micromixer with optimized working parameters is able to attain a mixing efficiency of 95% in a span of 0.5 seconds using a frequency of 10 Hz, a voltage of 0.7 V, and an inlet velocity of 0.366 mm/s.
Keywords: Microfluidics, active mixer, pulsed AC electroosmosis flow, micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5051985 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: Consumer behavior, social media, technology acceptance model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061984 Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry
Authors: Yongseok Kwon, Woowon Jeong, Eunjin Cho, Sangkug Chung, Kyehan Rhee
Abstract:
Steady streaming flow fields induced by a 500 mm bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the sagittal plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytical solution, and they also showed a reasonable agreement.
Keywords: Oscillating bubble, Particle-Image-Velocimetry microstreaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181983 Inductance Characteristic of Annealed Titanium Dioxide on Silicon Substrate
Authors: Chih Chin Yang, Lan Hui Huang, Bo Shum Chen, Jia Liang Ke, Chung Lun Tsai
Abstract:
The control of oxygen flow rate during growth of titanium dioxide by mass flow controller in DC plasma sputtering growth system is studied. The impedance of TiO2 films for inductance effect is influenced by annealing time and oxygen flow rate. As annealing time is increased, the inductance of TiO2 film is the more. The growth condition of optimum and maximum inductance for TiO2 film to serve as sensing device are oxygen flow rate of 15 sccm and large annealing time. The large inductance of TiO2 film will be adopted to fabricate the biosensor to obtain the high sensitivity of sensing in biology.Keywords: Annealed, Inductance, Silicon substarte, Titanium dioxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651982 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray
Authors: M. M. Seraj, M. S. Gadala
Abstract:
This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.
Keywords: Water spray, wetting, aluminum plate, flow rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561981 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes
Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon
Abstract:
Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.Keywords: All-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441980 Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump
Authors: Vishnu Prasad Sharma, S. Kumaraswamy, A. Mani
Abstract:
This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.
Keywords: Evacuation test, jet pump, nozzle profile, nozzle spacing, performance test, two phase flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33191979 Contribution to Active and Passive Control of Flow around a Cylinder
Authors: M. Tahar Bouzaher
Abstract:
This numerical study aims to develop a coupled, passive and active control strategy of the flow around a cylinder of diameter D, and Re=4000. The strategy consists to put a cylindrical rod in front of a deforming cylinder. The quasi- elliptical deformation of cylinder follow a sinusoidal law in order to reduce the drag force. To analyze the evolution of unsteady vortices, the Large Eddy Simulation approach is used in this 2D simulation, carried out using ANSYS – Fluent. The movement of deformation is reproduced using an internal subroutine, introduced in the form of a User Defined Function UDF. Two diameters of the rod were tested for a rod placed at a distance L = 3 ×d, with an amplitudes of deformation A = 5%, A = 25% and A = 50% of the cylinder diameter, the frequency of deformation take the values fd = 1fn, 5fn and 8fn, which fn represents the naturel vortex shedding frequency. The results show substantial changes in the flow behavior and for a rod of 6mm (1% D) with amplitude A = 25%, and with a 2fn frequency, drag reduction of 60% was recorded.
Keywords: CFD, Flow separation, control, Boundary layer, rod, Cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22391978 AJcFgraph - AspectJ Control Flow Graph Builder for Aspect-Oriented Software
Authors: Reza Meimandi Parizi, Abdul Azim Abdul Ghani
Abstract:
The ever-growing usage of aspect-oriented development methodology in the field of software engineering requires tool support for both research environments and industry. So far, tool support for many activities in aspect-oriented software development has been proposed, to automate and facilitate their development. For instance, the AJaTS provides a transformation system to support aspect-oriented development and refactoring. In particular, it is well established that the abstract interpretation of programs, in any paradigm, pursued in static analysis is best served by a high-level programs representation, such as Control Flow Graph (CFG). This is why such analysis can more easily locate common programmatic idioms for which helpful transformation are already known as well as, association between the input program and intermediate representation can be more closely maintained. However, although the current researches define the good concepts and foundations, to some extent, for control flow analysis of aspectoriented programs but they do not provide a concrete tool that can solely construct the CFG of these programs. Furthermore, most of these works focus on addressing the other issues regarding Aspect- Oriented Software Development (AOSD) such as testing or data flow analysis rather than CFG itself. Therefore, this study is dedicated to build an aspect-oriented control flow graph construction tool called AJcFgraph Builder. The given tool can be applied in many software engineering tasks in the context of AOSD such as, software testing, software metrics, and so forth.Keywords: Aspect-Oriented Software Development, AspectJ, Control Flow Graph, Data Flow Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21001977 Modification by the River Vaslui of the Hydrological Regime and Its Economic Implications (Romania)
Authors: Gheorghe Romanescu, IonuŃ V. Jora, Cristian Constantin Stoleriu
Abstract:
The influence of human activities produced by dams along the river beds is minor, but the location of accumulation of water directly influences the hydrological regime. The most important effect of the influence of damming on the way water flows decreases the frequency of floods. The water rate controls the water flow of the dams. These natural reservoirs become dysfunctional and, as a result, a new distribution of flow in the downstream sector, where maximum flow is, brings about, in this case, higher values. In addition to fishing, middle and lower courses of rivers located by accumulation also have a role in mitigating flood waves, thus providing flood protection. The Vaslui also ensures a good part of the needs of the town water supply. The most important lake is Solesti, close to the Vaslui River, opened in 1974. A hydrological regime of accumulation is related to an anthropogenic and natural drainage system. The design conditions and their manoeuvres drain or fill the water courses.
Keywords: Hydraulic works, hydrological regime, average flow, repeat flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14801976 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines
Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew
Abstract:
Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.
Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5401975 Shear-Layer Instabilities of a Pulsed Stack-Issued Transverse Jet
Authors: Ching M. Hsu, Rong F. Huang, Michael E. Loretero
Abstract:
Shear-layer instabilities of a pulsed stack-issued transverse jet were studied experimentally in a wind tunnel. Jet pulsations were induced by means of acoustic excitation. Streak pictures of the smoke-flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera. Instantaneous velocities of the shear-layer instabilities in the flow were digitized by a hot-wire anemometer. By analyzing the streak pictures of the smoke-flow visualization, three characteristic flow modes, synchronized flapping jet, transition, and synchronized shear-layer vortices, are identified in the shear layer of the pulsed stack-issued transverse jet at various excitation Strouhal numbers. The shear-layer instabilities of the pulsed stack-issued transverse jet are synchronized by acoustic excitation except for transition mode. In transition flow mode, the shear-layer vortices would exhibit a frequency that would be twice as great as the acoustic excitation frequency.Keywords: Acoustic excitation, jet in crossflow, shear-layer instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991974 Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere
Authors: Eiichi Sasaki, Shin-ichi Takehiro, Michio Yamada
Abstract:
We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.Keywords: rotating sphere, two-dimensional flow, bifurcationstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16511973 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation
Authors: Aymen Laadhari, Gábor Székely
Abstract:
In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.
Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10971972 Monitoring Sand Transport Characteristics in Multiphase Flow in Horizontal Pipelines Using Acoustic Emission Technology
Authors: M. El-Alej, D. Mba, T. Yan, M. Elforgani
Abstract:
This paper presents an experimental investigation using Acoustic Emission (AE) technology to monitor sand transportation in multiphase flow. The investigations were undertaken on three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2msˉ¹ to 2.0msˉ¹ and superficial liquid velocity (VSL) had a range of between 0.2msˉ¹ to 1.0msˉ¹. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG), and superficial liquid velocity (VSL).
Keywords: Acoustic Emission (AE), multiphase flow, sand monitoring, sand minimum transport condition (MTC), condition monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35821971 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow
Authors: Jungho Choi, Youngwan Cho
Abstract:
The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26441970 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner
Authors: Guy Leshem, Ya'acov Ritov
Abstract:
Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39111969 Finite Element Prediction of Multi-Size Particulate Flow through Two-Dimensional Pump Casing
Authors: K. V. Pagalthivarthi, R. J. Visintainer
Abstract:
Two-dimensional Eulerian (volume-averaged) continuity and momentum equations governing multi-size slurry flow through pump casings are solved by applying a penalty finite element formulation. The computational strategy validated for multi-phase flow through rectangular channels is adapted to the present study. The flow fields of the carrier, mixture and each solids species, and the concentration field of each species are determined sequentially in an iterative manner. The eddy viscosity field computed using Spalart-Allmaras model for the pure carrier phase is modified for the presence of particles. Streamline upwind Petrov-Galerkin formulation is used for all the momentum equations for the carrier, mixture and each solids species and the concentration field for each species. After ensuring mesh-independence of solutions, results of multi-size particulate flow simulation are presented to bring out the effect of bulk flow rate, average inlet concentration, and inlet particle size distribution. Mono-size computations using (1) the concentration-weighted mean diameter of the slurry and (2) the D50 size of the slurry are also presented for comparison with multi-size results.
Keywords: Eulerian-Eulerian model, Multi-size particulate flow, Penalty finite elements, Pump casing, Spalart-Allmaras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430