Search results for: meshes convergence
438 Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes
Authors: Dylan M. Copeland
Abstract:
We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.
Keywords: Boundary elements, finite elements, Helmholtz equation, Maxwell equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726437 L1-Convergence of Modified Trigonometric Sums
Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia
Abstract:
The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.Keywords: Conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222436 Development of Improved Three Dimensional Unstructured Tetrahedral Mesh Generator
Authors: Ng Yee Luon, Mohd Zamri Yusoff, Norshah Hafeez Shuaib
Abstract:
Meshing is the process of discretizing problem domain into many sub domains before the numerical calculation can be performed. One of the most popular meshes among many types of meshes is tetrahedral mesh, due to their flexibility to fit into almost any domain shape. In both 2D and 3D domains, triangular and tetrahedral meshes can be generated by using Delaunay triangulation. The quality of mesh is an important factor in performing any Computational Fluid Dynamics (CFD) simulations as the results is highly affected by the mesh quality. Many efforts had been done in order to improve the quality of the mesh. The paper describes a mesh generation routine which has been developed capable of generating high quality tetrahedral cells in arbitrary complex geometry. A few test cases in CFD problems are used for testing the mesh generator. The result of the mesh is compared with the one generated by a commercial software. The results show that no sliver exists for the meshes generated, and the overall quality is acceptable since the percentage of the bad tetrahedral is relatively small. The boundary recovery was also successfully done where all the missing faces are rebuilt.Keywords: Mesh generation, tetrahedral, CFD, Delaunay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516435 Turbulence Modeling of Source and Sink Flows
Authors: Israt Jahan Eshita
Abstract:
Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.
Keywords: Hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow and wall y+.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535434 Hybrid Coding for Animated Polygonal Meshes
Authors: Jinghua Zhang, Charles B. Owen, Jinsheng Xu
Abstract:
A new hybrid coding method for compressing animated polygonal meshes is presented. This paper assumes the simplistic representation of the geometric data: a temporal sequence of polygonal meshes for each discrete frame of the animated sequence. The method utilizes a delta coding and an octree-based method. In this hybrid method, both the octree approach and the delta coding approach are applied to each single frame in the animation sequence in parallel. The approach that generates the smaller encoded file size is chosen to encode the current frame. Given the same quality requirement, the hybrid coding method can achieve much higher compression ratio than the octree-only method or the delta-only method. The hybrid approach can represent 3D animated sequences with higher compression factors while maintaining reasonable quality. It is easy to implement and have a low cost encoding process and a fast decoding process, which make it a better choice for real time application.Keywords: animated polygonal meshes, compression, deltacoding, octree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469433 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac
Abstract:
In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepregs whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analysed through the tests, in this study, the applicability and possibility are proposed.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Glass Fiber Reinforced Plastic (GFRP), Stainless Wire Mesh, Electromagnetic Shielding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752432 3D Mesh Coarsening via Uniform Clustering
Authors: Shuhua Lai, Kairui Chen
Abstract:
In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.Keywords: Coarsening, mesh clustering, shape approximation, mesh simplification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405431 Border Limited Adaptive Subdivision Based On Triangle Meshes
Authors: Pichayut Peerasathien, Hiroshi Nagahashi
Abstract:
Subdivision is a method to create a smooth surface from a coarse mesh by subdividing the entire mesh. The conventional ways to compute and render surfaces are inconvenient both in terms of memory and computational time as the number of meshes will increase exponentially. An adaptive subdivision is the way to reduce the computational time and memory by subdividing only certain selected areas. In this paper, a new adaptive subdivision method for triangle meshes is introduced. This method defines a new adaptive subdivision rules by considering the properties of each triangle's neighbors and is embedded in a traditional Loop's subdivision. It prevents some undesirable side effects that appear in the conventional adaptive ways. Models that were subdivided by our method are compared with other adaptive subdivision methods
Keywords: Subdivision, loop subdivision, handle cracks, smooth surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652430 A Methodology for Reducing the BGP Convergence Time
Authors: Eatedal A. Alabdulkreem, Hamed S. Al-Raweshidy, Maysam F. Abbod
Abstract:
Border Gateway Protocol (BGP) is the standard routing protocol between various autonomous systems (AS) in the internet. In the event of failure, a considerable delay in the BGP convergence has been shown by empirical measurements. During the convergence time the BGP will repeatedly advertise new routes to some destination and withdraw old ones until it reach a stable state. It has been found that the KEEPALIVE message timer and the HOLD time are tow parameters affecting the convergence speed. This paper aims to find the optimum value for the KEEPALIVE timer and the HOLD time that maximally reduces the convergence time without increasing the traffic. The KEEPALIVE message timer optimal value founded by this paper is 30 second instead of 60 seconds, and the optimal value for the HOLD time is 90 seconds instead of 180 seconds.
Keywords: BGP, Convergence Time, HOLD time, Keep alive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042429 On the Fast Convergence of DD-LMS DFE Using a Good Strategy Initialization
Authors: Y.Ben Jemaa, M.Jaidane
Abstract:
In wireless communication system, a Decision Feedback Equalizer (DFE) to cancel the intersymbol interference (ISI) is required. In this paper, an exact convergence analysis of the (DFE) adapted by the Least Mean Square (LMS) algorithm during the training phase is derived by taking into account the finite alphabet context of data transmission. This allows us to determine the shortest training sequence that allows to reach a given Mean Square Error (MSE). With the intention of avoiding the problem of ill-convergence, the paper proposes an initialization strategy for the blind decision directed (DD) algorithm. This then yields a semi-blind DFE with high speed and good convergence.
Keywords: Adaptive Decision Feedback Equalizer, PerformanceAnalysis, Finite Alphabet Case, Ill-Convergence, Convergence speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071428 On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System
Authors: Guiding Gu, Guo Liu
Abstract:
We discuss the convergence property of the minimum residual (MINRES) method for the solution of complex shifted Hermitian system (αI + H)x = f. Our convergence analysis shows that the method has a faster convergence than that for real shifted Hermitian system (Re(α)I + H)x = f under the condition Re(α) + λmin(H) > 0, and a larger imaginary part of the shift α has a better convergence property. Numerical experiments show such convergence properties.
Keywords: complex shifted linear system, Hermitian matrix, MINRES method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626427 The Comparison of Finite Difference Methods for Radiation Diffusion Equations
Authors: Ren Jian, Yang Shulin
Abstract:
In this paper, the difference between the Alternating Direction Method (ADM) and the Non-Splitting Method (NSM) is investigated, while both methods applied to the simulations for 2-D multimaterial radiation diffusion issues. Although the ADM have the same accuracy orders with the NSM on the uniform meshes, the accuracy of ADM will decrease on the distorted meshes or the boundary of domain. Numerical experiments are carried out to confirm the theoretical predication.Keywords: Alternating Direction Method, Non-SplittingMethod, Radiation Diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424426 A Family of Improved Secant-Like Method with Super-Linear Convergence
Authors: Liang Chen
Abstract:
A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.
Keywords: Nonlinear equations, Secant method, Convergence order, Secant-like method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047425 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Element Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular polyhedral meshes have many advantages. One way to build such meshes consists in constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, i.e. elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: first, we present a gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.
Keywords: Anisotropic Voronoi Diagrams, Meshes for Numerical Simulations, Optimisation, Volumic Polyhedral Meshing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62424 Analyzing Convergence of IT and Energy Industry Based on Social System Framework
Authors: Giseob Byun, Ji Yeon Cho, Bong Gyou Lee
Abstract:
The purpose of this study is to analyze Green IT industry in major developed countries and to suggest overall directions for IT-Energy convergence industry. Recently, IT industry is pointed out as a problem such as environmental pollution, energy exhaustion, and high energy consumption. Therefore, Green IT gets focused which concerns as solution of these problems. However, since it is a beginning stage of this convergence area, there are only a few studies of IT-Energy convergence industry. According to this, this study examined the major developed countries in terms of institution arrangements, resources, markets and companies based on Van de Ven(1999)'s social system framework that shows relationship among key components of industrial infrastructure. Subsequently, the direction of the future study of convergence on IT and Energy industry is proposed.
Keywords: Green IT, Energy industry, Convergence, Social System Framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415423 A Novel Convergence Accelerator for the LMS Adaptive Algorithm
Authors: Jeng-Shin Sheu, Jenn-Kaie Lain, Tai-Kuo Woo, Jyh-Horng Wen
Abstract:
The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.Keywords: LMS, Markov chain, convergence rate, accelerator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764422 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization
Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao
Abstract:
Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.
Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697421 The Complementarities of Multi-Lateralism, Andregionalism and Income Convergence: ASEAN and SAARC
Authors: Kankesu Jayanthakumaran, Shao-Wei Lee
Abstract:
This paper proposes the hypothesis that multilateralism and regionalism are complementary, and that regional income convergence is likely with a like minded and committed regionalism that often has links geographically and culturally. The association between international trade, income per capita, and regional income convergence in founder members of ASEAN and SAARC, is explored by applying the Lumsdaine, and Papell approach. The causal relationships between the above variables are also studied in respective trade blocs by using Granger causality tests. The conclusion is that global reforms have had a greater impact on increasing trade for both trade blocs and induced convergence only in ASEAN-5 countries. The experience of ASEAN countries shows a two-way causal relationship between the flow from trade to regional income convergence, and vice versa. There is no evidence in SAARC countries for income convergence and causality.
Keywords: ASEAN-5, SAARC-5, trade liberalisation, incomeconvergence, structural breaks and causality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208420 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454419 On Convergence of Affine Thin Plate Bending Element
Authors: Rado Flajs, Miran Saje
Abstract:
In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.
Keywords: Quadrilateral thin plate bending element, convergence, generalized patch test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380418 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces
Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa
Abstract:
In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.Keywords: Hölder continuity condition, Fréchet derivative, fifth order convergence, recurrence relations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935417 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well known formulas.Keywords: Conjugate gradient method, conjugate gradient coefficient, global convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294416 A Family of Distributions on Learnable Problems without Uniform Convergence
Authors: César Garza
Abstract:
In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.
Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356415 Pathology of Explanted Transvaginal Meshes
Authors: Vladimir V. Iakovlev, Erin T. Carey, John Steege
Abstract:
The use of polypropylene mesh devices for Pelvic Organ Prolapse (POP) spread rapidly during the last decade, yet our knowledge of the mesh-tissue interaction is far from complete. We aimed to perform a thorough pathological examination of explanted POP meshes and describe findings that may explain mechanisms of complications resulting in product excision. We report a spectrum of important findings, including nerve ingrowth, mesh deformation, involvement of detrusor muscle with neural ganglia, and polypropylene degradation. Analysis of these findings may improve and guide future treatment strategies.
Keywords: Transvaginal, mesh, nerves, polypropylene degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4087414 New Newton's Method with Third-order Convergence for Solving Nonlinear Equations
Authors: Osama Yusuf Ababneh
Abstract:
For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.
Keywords: Third-order convergence, non-linear equations, root finding, iterative method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964413 Perspectives of Financial Reporting Harmonization
Authors: Sorana M. Manoiu, Razvan V. Mustata, Jiří Strouhal, Carmen G. Bonaci, Dumitru Matis, Jiřina Bokšová
Abstract:
In the current context of globalization, accountability has become a key subject of real interest for both, national and international business areas, due to the need for comparability and transparency of the economic situation, so we can speak about the harmonization and convergence of international accounting. The paper presents a qualitative research through content analysis of several reports concerning the roadmap for convergence. First, we develop a conceptual framework for the evolution of standards’ convergence and further we discuss the degree of standards harmonization and convergence between US GAAP and IAS/IFRS as to October 2012. We find that most topics did not follow the expected progress. Furthermore there are still some differences in the long-term project that are in process to be completed and other that were reassessed as a lower priority project.
Keywords: Convergence, harmonization, FASB, IASB, IFRS, US GAAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3571412 Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig
Authors: Seong-Mo An, Rohit Ramesh, Young-Sook Lee, Wan-Young Chung
Abstract:
The proper assessment of interaxial distance and convergence control are important factors in stereoscopic imaging technology to make an efficient 3D image. To control interaxial distance and convergence for efficient 3D shooting, horizontal 3D camera rig is designed using some hardware components like 'LM Guide', 'Goniometer' and 'Rotation Stage'. The horizontal 3D camera rig system can be properly aligned by moving the two cameras horizontally in same or opposite directions, by adjusting the camera angle and finally considering horizontal swing as well as vertical swing. In this paper, the relationship between interaxial distance and convergence angle control are discussed and intensive experiments are performed in order to demonstrate an easy and effective 3D shooting.Keywords: Interaxial, Convergence, Stereoscopic, Horizontal 3D Camera Rig
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646411 3D Brain Tumor Segmentation Using Level-Sets Method and Meshes Simplification from Volumetric MR Images
Authors: K. Aloui, M. S. Naceur
Abstract:
The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.
Keywords: Medical imaging, level-sets, compression, meshess implification, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135410 A Cell-centered Diffusion Finite Volume Scheme and it's Application to Magnetic Flux Compression Generators
Authors: Qiang Zhao, Yina Shi, Guangwei Yuan, Zhiwei Dong
Abstract:
A cell-centered finite volume scheme for discretizing diffusion operators on distorted quadrilateral meshes has recently been designed and added to APMFCG to enable that code to be used as a tool for studying explosive magnetic flux compression generators. This paper describes this scheme. Comparisons with analytic results for 2-D test cases are presented, as well as 2-D results from a test of a "realistic" generator configuration.
Keywords: Cell-centered FVM, distorted meshes, diffusion scheme, MFCG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364409 A Note on the Convergence of the Generalized AOR Iterative Method for Linear Systems
Authors: Zhong-xi Gao, Hou-biao Li
Abstract:
Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant cofficient matrices. J. Comp. Appl. Math. 213, 240-247 (2008)]. In this paper, we give the convergence of the GAOR method for linear systems with strictly doubly diagonally dominant matrix, which improves these corresponding results.
Keywords: Diagonally dominant matrix, GAOR method, Linear system, Convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304