Search results for: yttrium aluminum garnet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 715

Search results for: yttrium aluminum garnet

625 Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy

Authors: Hamid Alihosseini, Kamran Dehghani

Abstract:

In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C.

Keywords: bake hardening, ultrafine grain, nano grain, AA6061 aluminum,

Procedia PDF Downloads 311
624 Design Considerations on Cathodic Protection for X65 Steel Tank Containing Fresh Water

Authors: A. M. Al-Sabagh, M. A. Deyab, M. N. Kroush

Abstract:

The present study focused on critical and detailed approach for using aluminum electrode as impressed current anode for cathodic protection of X65 steel tank containing fresh water. The impressed current design calculation showed 0.6 A of current demand and voltage of 0.33 V required to adequately protect the X65 steel tank with internal surface area of 421 m². We used here one transformer rectifier with current and voltage output of 25 A and 25 V, respectively. The data showed that the potentials ranged from -0.474 to -0.509 V (vs. Cu/CuSO₄), prior to the application of cathodic protection. When the potential was measured 1 h after the application of cathodic protection, the potential values showed considerable shift within protection range (-0.950 V vs. Cu/CuSO₄). The results confirmed that aluminum anode can be used in freshwater applications with high efficiency (current capacity) and low consumption rate.

Keywords: cathodic protection, aluminum, steel, fresh water

Procedia PDF Downloads 128
623 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation

Authors: M. Farnush

Abstract:

This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.

Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics

Procedia PDF Downloads 288
622 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints

Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache

Abstract:

The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.

Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy

Procedia PDF Downloads 103
621 Mineralogy and Thermobarometry of Xenoliths in Basalt from the Chanthaburi-Trat Gem Fields, Thailand

Authors: Apichet Boonsoong

Abstract:

In the Chanthaburi-Trat basalts, xenoliths are composed of essentially ultramafic xenoliths (particularly spinel lherzolite) with a few of an aggregate of feldspar. Some 19 ultramafic xenoliths were collected from 13 different locations. They range in size from 3.5 to 60mm across. Most are weathered and oxidized on the surface but fresh samples are obtained from cut surfaces. Chemical analyses were performed on carbon-coated polished thin sections using a fully automated CAMECA SX-50 electron microprobe (EMPA) in wavelength-dispersive mode. In thin section, they are seen to consist of variable amounts of olivine, clinopyroxene, orthopyroxene with minor spinel and plagioclase, and are classed as lherzolite. Modal compositions of the ultramafic nodules vary with olivine (60-75%), clinopyroxene (20-30%), orthopyroxene (0-15%), minor spinel (1-3%) and plagioclase (<1%). The essential minerals form an equigranular, medium- to coarse-grained, granoblastic texture, and all are in mutual contact indicating attainment of equilibrium. Reaction rims are common along the nodule margins and in some are also present along grain boundaries. Zoning occurs in clinopyroxene, and to a lesser extent in orthopyroxene. The homogeneity of mineral compositions in lherzolite xenoliths suggests the attainment of equilibrium. The equilibration temperatures of these xenoliths are estimated to be in the range of 973 to 1063°C. Pressure estimates are not so easily obtained because no suitable barometer exists for garnet-free lherzolites and so an indirect method was used. The general mineral assemblage of the lherzolite xenoliths and the absence of garnet indicate a pressure range of approximately 12–19kbar, which is equivalent to depths approximately of 38 to 60km.

Keywords: chanthaburi-trat basalts, spinel lherzolite, xenoliths, 973 to 1063°C, 38 to 60km

Procedia PDF Downloads 92
620 Numerical and Experimental Analysis of Stiffened Aluminum Panels under Compression

Authors: Ismail Cengiz, Faruk Elaldi

Abstract:

Within the scope of the study presented in this paper, load carrying capacity and buckling behavior of a stiffened aluminum panel designed by adopting current ‘buckle-resistant’ design application and ‘Post –Buckling’ design approach were investigated experimentally and numerically. The test specimen that is stabilized by Z-type stiffeners and manufactured from aluminum 2024 T3 Clad material was test under compression load. Buckling behavior was observed by means of 3 – dimensional digital image correlation (DIC) and strain gauge pairs. The experimental study was followed by developing an efficient and reliable finite element model whose ability to predict behavior of the stiffened panel used for compression test is verified by compering experimental and numerical results in terms of load – shortening curve, strain-load curves and buckling mode shapes. While finite element model was being constructed, non-linear behaviors associated with material and geometry was considered. Finally, applicability of aluminum stiffened panel in airframe design against to composite structures was evaluated thorough the concept of ‘Structural Efficiency’. This study reveals that considerable amount of weight saving could be gained if the concept of ‘post-buckling design’ is preferred to the already conventionally used ‘buckle resistant design’ concept in aircraft industry without scarifying any of structural integrity under load spectrum.

Keywords: post-buckling, stiffened panel, non-linear finite element method, aluminum, structural efficiency

Procedia PDF Downloads 119
619 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 287
618 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite

Authors: Mohamed M. Emara, Heba Ashraf

Abstract:

This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.

Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability

Procedia PDF Downloads 506
617 Regional Metamorphism of the Loki Crystalline Massif Allochthonous Complex of the Caucasus

Authors: David Shengelia, Giorgi Chichinadze, Tamara Tsutsunava, Giorgi Beridze, Irakli Javakhishvili

Abstract:

The Loki pre-Alpine crystalline massif crops out within the Caucasus region. The massif basement is represented by the Upper Devonian gneissose quartz-diorites, the Lower-Middle Paleozoic metamorphic allochthonous complex, and different magmatites. Earlier, the metamorphic complex was considered as indivisible set represented by the series of different temperature metamorphits. The degree of metamorphism of separate parts of the complex is due to different formation conditions. This fact according to authors of the abstract was explained by the allochthonous-flaky structure of the complex. It was stated that the complex thrust over the gneissose quartz diorites before the intrusion of Sudetic granites. During the detailed mapping, the authors turned out that the metamorphism issues need to be reviewed and additional researches to be carried out. Investigations were accomplished by using the following methodologies: finding of key sections, a sampling of rocks, microscopic description of the material, analytical determination of elements in the rocks, microprobe analysis of minerals and new interpretation of obtained data. According to the author’s recent data within the massif four tectonic plates: Lower Gorastskali, Sapharlo-Lok-Jandari, Moshevani and “mélange” overthrust sheets have been mapped. They differ from each other by composition, the degree of metamorphism and internal structure. It is confirmed that the initial rocks of the tectonic plates formed in different geodynamic conditions during overthrusting due to tectonic compression form a thick tectonic sheet. Based on the detailed laboratory investigations additional mineral assemblages were established, temperature limits were specified, and a renewed trend of metamorphism facies and subfacies was elaborated. The results are the following: 1. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The main rock-forming minerals are carbonate, chlorite, spinel, epidote, clinoptilolite, plagioclase, hornblende, actinolite, hornblende, albite, serpentine, tremolite, talc, garnet, and prehnite. Regional metamorphism of rocks corresponds to the greenschist facies lowest stage. 2. The Sapharlo-Lok-Jandari overthrust sheet metapelites are represented by chloritoid, chlorite, phengite, muscovite, biotite, garnet, ankerite, carbonate, and quartz. Metabasites containing actinolite, chlorite, plagioclase, calcite, epidote, albite, actinolitic hornblende and hornblende are also present. The degree of metamorphism corresponds to the greenschist high-temperature chlorite, biotite, and low-temperature garnet subfacies. Later the rocks underwent the contact influence of Late Variscan granites. 3. The Moshevani overthrust sheet is represented mainly by metapelites and rarely by metabasites. Main rock-forming minerals of metapelites are muscovite, biotite, chlorite, quartz, andalusite, plagioclase, garnet and cordierite and of metabasites - plagioclase, green and blue-green hornblende, chlorite, epidote, actinolite, albite, and carbonate. Metamorphism level corresponds to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies as well. 4. The “mélange” overthrust sheet is built of different size rock fragments and blocks of Moshevani and Lower Gorastskali overthrust sheets. The degree of regional metamorphism of first and second overthrust sheets of the Loki massif corresponds to chlorite, biotite, and low-temperature garnet subfacies, but of the third overthrust sheet – to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies.

Keywords: regional metamorphism, crystalline massif, mineral assemblages, the Caucasus

Procedia PDF Downloads 137
616 Utilization of Treated Spend Pot Lining by Product from the Primary Aluminum Production in Cement and Concrete

Authors: Hang Tran, Victor Brial, Luca Sorelli, Claudiane Ouellet-Plamondon, David Conciatori, Laurent Birry

Abstract:

Spend pot lining (SPL) is a by-product generated from primary aluminum production. SPL consists of two parts, the first cut is rich in carbonaceous materials, and the second cut is rich in aluminum and silicon oxides. After treating by the hydrometallurgical Low Caustic Leaching and Liming process, the refractory part of SPL becomes an inert material, called LCLL ash in this project. LCLL ash was calcined at different temperatures (800 and 1000°C) and Calcined LCLL ash ground as fines of cement and replacement a part of cement in concrete production. The effect of LCLL ash on the chemical properties, mechanical properties and fresh behavior of concrete was evaluated by isothermal calorimetry, compressive test, and slump test. These results were compared to the reference mixture.

Keywords: spend pot lining, concrete, cement, compressive strength, calorimetry

Procedia PDF Downloads 189
615 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates

Authors: K. Subbaiah

Abstract:

Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.

Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties

Procedia PDF Downloads 431
614 Various Modification of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide

Authors: W. J. Stępniowski, W. Florkiewicz, M. Norek, M. Michalska-Domańska, E. Kościuczyk, T. Czujko

Abstract:

In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.

Keywords: anodic aluminum oxide, anodization, barrier layer thinning, nanopores

Procedia PDF Downloads 301
613 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation

Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta

Abstract:

Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.

Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD

Procedia PDF Downloads 374
612 Models of Environmental: Cracker Propagation of Some Aluminum Alloys (7xxx)

Authors: H. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 366
611 Nonstationary Increments and Casualty in the Aluminum Market

Authors: Andrew Clark

Abstract:

McCauley, Bassler, and Gunaratne show that integration I(d) processes as used in economics and finance do not necessarily produce stationary increments, which are required to determine causality in both the short term and the long term. This paper follows their lead and shows I(d) aluminum cash and futures log prices at daily and weekly intervals do not have stationary increments, which means prior causality studies using I(d) processes need to be re-examined. Wavelets based on undifferenced cash and futures log prices do have stationary increments and are used along with transfer entropy (versus cointegration) to measure causality. Wavelets exhibit causality at most daily time scales out to 1 year, and weekly time scales out to 1 year and more. To determine stationarity, localized stationary wavelets are used. LSWs have the benefit, versus other means of testing for stationarity, of using multiple hypothesis tests to determine stationarity. As informational flows exist between cash and futures at daily and weekly intervals, the aluminum market is efficient. Therefore, hedges used by producers and consumers of aluminum need not have a big concern in terms of the underestimation of hedge ratios. Questions about arbitrage given efficiency are addressed in the paper.

Keywords: transfer entropy, nonstationary increments, wavelets, localized stationary wavelets, localized stationary wavelets

Procedia PDF Downloads 174
610 Evaluation of Corrosion Property of Aluminium-Zirconium Dioxide (AlZrO2) Nanocomposites

Authors: M. Ramachandra, G. Dilip Maruthi, R. Rashmi

Abstract:

This paper aims to study the corrosion property of aluminum matrix nanocomposite of an aluminum alloy (Al-6061) reinforced with zirconium dioxide (ZrO2) particles. The zirconium dioxide particles are synthesized by solution combustion method. The nanocomposite materials are prepared by mechanical stir casting method, varying the percentage of n-ZrO2 (2.5%, 5% and 7.5% by weight). The corrosion behavior of base metal (Al-6061) and Al/ZrO2 nanocomposite in seawater (3.5% NaCl solution) is measured using the potential control method. The corrosion rate is evaluated by Tafel extrapolation technique. The corrosion potential increases with the increase in wt.% of n-ZrO2 in the nanocomposite which means the decrease in corrosion rate. It is found that on addition of n-ZrO2 particles to the aluminum matrix, the corrosion rate has decreased compared to the base metal.

Keywords: Al6061 alloy, corrosion, solution, stir casting, combustion, potentiostat, zirconium dioxide

Procedia PDF Downloads 359
609 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: aluminum, die casting, fuel cap, motorcycle

Procedia PDF Downloads 343
608 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8  10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.

Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF

Procedia PDF Downloads 37
607 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 367
606 The Effect of Substrate Surface Roughness for Hot Dip Aluminizing of IN718 Alloy

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

The hot dip aluminizing (HDA) process involves immersing a metallic substrate into a molten aluminum bath for several minutes, and removed from the bath and cooled down to room temperature. After the HDA process, various aluminide layers are formed as a result of interdiffusion between the substrate and the molten aluminum and between the aluminide layers. In order to form a uniform aluminide layer, the specimen must be covered and wet well by the molten aluminum. Surface roughness plays an important role in wettability, and thus, surface preparation is an important stage in determining the final surface roughness. In this study, different roughness values were achieved by grinding the surface with emery papers as 180, 320 and 600 grids. After the surface preparation, the HDA process was performed in a molten Al-Si bath at 700 ᴼC for 10 minutes. After the HDA process, a microstructural examination of the coating was carried out to evaluate the uniformity of the coating and adhesion between the substrate and the coating. According to the results, the best adhesion at the interface was observed on the specimen, which was prepared by 320 grid emery paper having a mean surface roughness (Ra) of 0.097 µm.

Keywords: hot-dip aluminizing, microstructure, surface roughness, coating

Procedia PDF Downloads 34
605 Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting

Authors: Balwinder Singh

Abstract:

Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature.

Keywords: investment casting, shell preheat temperature, firing temperature, Taguchi method

Procedia PDF Downloads 153
604 Machinability Study of A201-T7 Alloy

Authors: Onan Kilicaslan, Anil Kabaklarli, Levent Subasi, Erdem Bektas, Rifat Yilmaz

Abstract:

The Aluminum-Copper casting alloys are well known for their high mechanical strength, especially when compared to more commonly used Aluminum-Silicon alloys. A201 is one of the best in terms of strength vs. weight ratio among other aluminum alloys, which makes it suitable for premium quality casting applications in aerospace and automotive industries. It is reported that A201 has low castability, but it is easy to machine. However, there is a need to specifically determine the process window for feasible machining. This research investigates the machinability of A201 alloy after T7 heat treatment in terms of chip/burr formation, surface roughness, hardness, and microstructure. The samples are cast with low-pressure sand casting method and milling experiments are performed with uncoated carbide tools using different cutting speeds and feeds. Statistical analysis is used to correlate the machining parameters to surface integrity. It is found that there is a strong dependence of the cutting conditions on machinability and a process window is determined.

Keywords: A201-T7, machinability, milling, surface integrity

Procedia PDF Downloads 167
603 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel

Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han

Abstract:

Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.

Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method

Procedia PDF Downloads 359
602 Effect of Zr Addition to Aluminum Grain Refined by Ti+B on Its Wear Resistance after Extrusion Condition

Authors: Adnan I. O. Zaid, Safwan M. A. Alqawabah

Abstract:

Review of the available literature on grain refinement of aluminum and its alloys reveals that little work is published on the effect of refiners on mechanical characteristics and wear resistance. In this paper, the effect of addition of Zr to Al grain refined by Ti+B on its metallurgical, mechanical characteristics and wear resistance both in the as cast and after extrusion condition are presented and discussed. It was found that Addition of Zr to Al resulted in deterioration of its mechanical strength and hardness, whereas it resulted in improvement of both of them when added to Al grain refined by Ti+B. Furthermore it was found that the direct extrusion process resulted in further increase of the mechanical strength and hardness of Al and its micro-alloys. Also it resulted in increase of their work hardening index, n, i.e. improved their formability, hence it reduces the number of stages required for forming at large strains in excess of the plastic instability before Zr addition.

Keywords: aluminum, grain refinement, titanium + boron, zirconium, mechanical characteristics, wear resistance, direct extrusion

Procedia PDF Downloads 414
601 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 634
600 Enhancement of Critical Temperature and Improvement of Mechanical Properties of Yttrium Barium Copper Oxide Superconductor

Authors: Hamed Rahmati

Abstract:

Nowadays, increasing demand for electric energy makes applying high-temperature superconductors inevitable. However, the most important problem of the superconductors is their critical temperature, which necessitates using a cryogenic system for keeping these substances’ temperatures lower than the critical level. Cryogenic systems used for this reason are not efficient enough, and keeping these large systems maintained is costly. Moreover, the low critical temperature of superconductors has delayed using them in electrical equipment. In this article, at first, characteristics of three superconductors, magnesium diboride (MgB2), yttrium barium copper oxide (YBCO), and iron-based superconductors (FeSC), have been analyzed and a new structure of YBCO superconductors is presented. Generally, YBCO (YBa2Cu7O2) has a weak mechanical structure. By introducing some changes in its configuration and adding one silver atom (Ag) to it, its mechanical characteristics improved significantly. Moreover, for each added atom, a star-form structure was introduced in which changing the location of Ag atom led to considerable changes in temperature. In this study, Ag has been added by applying two accurate methods named random and substitute ones. The results of both methods have been examined. It has been shown that adding Ag by applying the substitute method can improve the mechanical properties of the superconductor in addition to increasing its critical temperature. In the mentioned strategy (using the substitute method), the critical temperature of the superconductor was measured up to 99 Kelvin. This new structure is usable in designing superconductors’ rings to be applied in superconducting magnetic energy storage (SMES). It can also lead to a reduction in the cryogenic system size, a decline in conductor wastes, and a decrease in costs of the whole system.

Keywords: critical temperature, cryogenic system, high-temperature superconductors, YBCO

Procedia PDF Downloads 121
599 Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading

Authors: Abdelghani May

Abstract:

This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material.

Keywords: microstructural investigation, fatigue damage quantification, anisotropic behavior, AA2017 aluminum alloy, cyclic loading, crystallographic texture, scanning electron microscopy

Procedia PDF Downloads 49
598 Green Corrosion Inhibitor from Essential Oil of Linseed for Aluminum in Na2CO3 Solution

Authors: L. Bazzi, E. Azzouyahar, A. Lamiri, M. Essahli

Abstract:

Effect of addition of linseed oil (LSO) on the corrosion of aluminium in 0.1 M Na2CO3 has been studied by weight loss measurements, potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements. The inhibition efficiency was found to increase with inhibitor content to attain 70% for LSO at 4g/L. Inhibition efficiency E (%) obtained from the various methods is in good agreement. The temperature effect on the corrosion behavior of aluminium was studied by potentiodynamic technique in the range from 298 to 308 K.

Keywords: aluminum, corrosion, green inhibitors, carbonate, linseed oil

Procedia PDF Downloads 324
597 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu

Abstract:

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Keywords: aluminum sector, analytic hierarchy process, decision making, green logistics

Procedia PDF Downloads 319
596 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.

Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling

Procedia PDF Downloads 335