Search results for: wave theory of optics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5853

Search results for: wave theory of optics

5643 Influence of Corrugation and Loosely Bonded Interface on the Propagation of Torsional Wave Propagation in a Viscoelastic Layer

Authors: Amrita Das, Abhishek Kumar Singh

Abstract:

The present paper calibrates the efficacy of corrugated and loosely bonded common interface of a viscoelastic layer and a dry sandy Gibson half-space on the propagation of torsional surface wave. Using suitable boundary conditions, the dispersion relation for the concerned problem is deduced in complex form. Numerical computation of the real part of the obtained dispersion relation gives the dispersion curve whereas the imaginary part bestows the damping curves. The use of Whittaker’s function and Bessel’s functions are among the major concerns of the paper. The investigation of the influence of the affecting parameters viz. heterogeneities, sandiness, Biot’s gravity parameter, initial stresses, loosely bonded interface, corrugation and internal friction on the phase velocity as well as damped velocity of torsional wave, through numerical discussion and graphical illustration, is among the major highlights of the current study.

Keywords: corrugation, dry sandy Gibson half-space, loosely bonded interface, torsional wave, viscoelastic layer

Procedia PDF Downloads 301
5642 Kinetic Alfvén Wave Localization and Turbulent Spectrum

Authors: Anju Kumari, R. P. Sharma

Abstract:

The localization of Kinetic Alfvén Wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. KAW breaks up into localized large amplitude structures when perturbed by MHD fluctuations of the medium which are in the form of magnetosonic waves. Numerical simulation has been performed to analyse the localized structures and resulting turbulent spectrum of KAW applicable to magnetopause. Simulation results reveal that power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. The obtained results are compared with observations collected from the THEMIS spacecraft in magnetopause.

Keywords: Kinetic Alfvén Wave (KAW), localization, turbulence, turbulent spectrum

Procedia PDF Downloads 468
5641 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: absorbing, carbon, carbon nickel, frequency, thicknesses

Procedia PDF Downloads 153
5640 Simultaneous Measurement of Wave Pressure and Wind Speed with the Specific Instrument and the Unit of Measurement Description

Authors: Branimir Jurun, Elza Jurun

Abstract:

The focus of this paper is the description of an instrument called 'Quattuor 45' and defining of wave pressure measurement. Special attention is given to measurement of wave pressure created by the wind speed increasing obtained with the instrument 'Quattuor 45' in the investigated area. The study begins with respect to theoretical attitudes and numerous up to date investigations related to the waves approaching the coast. The detailed schematic view of the instrument is enriched with pictures from ground plan and side view. Horizontal stability of the instrument is achieved by mooring which relies on two concrete blocks. Vertical wave peak monitoring is ensured by one float above the instrument. The synthesis of horizontal stability and vertical wave peak monitoring allows to create a representative database for wave pressure measuring. Instrument ‘Quattuor 45' is named according to the way the database is received. Namely, the electronic part of the instrument consists of the main chip ‘Arduino', its memory, four load cells with the appropriate modules and the wind speed sensor 'Anemometers'. The 'Arduino' chip is programmed to store two data from each load cell and two data from the anemometer on SD card each second. The next part of the research is dedicated to data processing. All measured results are stored automatically in the database and after that detailed processing is carried out in the MS Excel. The result of the wave pressure measurement is synthesized by the unit of measurement kN/m². This paper also suggests a graphical presentation of the results by multi-line graph. The wave pressure is presented on the left vertical axis, while the wind speed is shown on the right vertical axis. The time of measurement is displayed on the horizontal axis. The paper proposes an algorithm for wind speed measurements showing the results for two characteristic winds in the Adriatic Sea, called 'Bura' and 'Jugo'. The first of them is the northern wind that reaches high speeds, causing low and extremely steep waves, where the pressure of the wave is relatively weak. On the other hand, the southern wind 'Jugo' has a lower speed than the northern wind, but due to its constant duration and constant speed maintenance, it causes extremely long and high waves that cause extremely high wave pressure.

Keywords: instrument, measuring unit, waves pressure metering, wind seed measurement

Procedia PDF Downloads 172
5639 Evaluating the Impact of Early Maternal Incarceration on Male Delinquent Behavior during Emerging Adulthood through the Mediating Mechanism of Mastery

Authors: Richard Abel

Abstract:

In the United States, increased incarceration rates have caused many adolescents to feel the strain of parental absence. This absence is then manifest through adolescent feelings of parental rejection. Additionally, upon reentry maternal incarceration may be related to adolescents experienced perceived excessive disciple. It is possible parents engage in this manner of discipline attempting to prevent the child from taking the same path to incarceration as the parent. According to General Strain Theory, adolescents encountering strain are likely to experience negative emotions. The emotion that is most likely to lead to delinquency is anger through reduced inhibitions and motivation to act. Additionally, males are more likely to engage in delinquent behavior, regardless of experiencing strain. This is not the case for every male who experiences maternal incarceration, parental rejection, excessive discipline, or anger. There are protective factors that enable agency within individuals. One such protective factor is mastery, or the perception that one is in control of his or her own future. The model proposed in this research suggests maternal incarceration is associated with increased parental rejection and excessive discipline in males. Males experiencing parental rejection and excessive discipline are likely to experience increased anger, which is then associated with increases in delinquent behavior. This model explores whether agency, in the form of mastery, mediates the relationship between strains and negative emotions, or between negative emotions and delinquent behavior. The Kaplan Longitudinal and Multigenerational Study (KLAMS) dataset is uniquely situated to analyze this model providing longitudinal data collected from both parents and their offspring. Maternal incarceration is constructed using parental responses such that the mother was incarcerated after the child’s birth, and any incarceration that happened prior to birth is excluded. The remaining variables of the study are all constructed from varying waves of the adolescent survey. Parental rejection, along with control variables for age, race, parental socioeconomic status, neighborhood effects, delinquent peers, and prior delinquent behavior are all constructed using Wave I data. To increase causal inference, the negative emotion of anger and the mediating variable of mastery are measured during Wave II. Lastly, delinquent behavior is measured at Wave III. Results of the analysis show expected relationships such that adolescent males encountering maternal incarceration show increased perception of parental rejection and excessive discipline. Additionally, there is a positive relationship between parental rejection and excessive discipline at Wave I and feelings of anger at Wave II for males. For males experiencing either of these strains in Wave I, feelings of anger in Wave II are found to be associated with increased delinquent behavior in Wave III. Mastery was found to mediate the relationship between both parental rejection and excessive discipline and anger, but no such mediation occurs in the relationship between anger and delinquency, regardless of the strain being experienced. These findings suggest adolescent males who feel they are in control of their own lives are less likely to experience negative emotions produced by the occurrence of strain, thereby decreasing male engagement in delinquent behavior later in life.

Keywords: delinquency, mastery, maternal incarceration, strain

Procedia PDF Downloads 105
5638 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation

Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun

Abstract:

This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.

Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation

Procedia PDF Downloads 426
5637 Asymptotic Expansion of Double Oscillatory Integrals: Contribution of Non Stationary Critical Points of the Second Kind

Authors: Abdallah Benaissa

Abstract:

In this paper, we consider the problem of asymptotics of double oscillatory integrals in the case of critical points of the second kind, the order of contact between the boundary and a level curve of the phase being even, the situation when the order of contact is odd will be studied in other occasions. Complete asymptotic expansions will be derived and the coefficient of the leading term will be computed in terms of the original data of the problem. A multitude of people have studied this problem using a variety of methods, but only in a special case when the order of contact is minimal: the more cited papers are a paper of Jones and Kline and an other one of Chako. These integrals are encountered in many areas of science, especially in problems of diffraction of optics.

Keywords: asymptotic expansion, double oscillatory integral, critical point of the second kind, optics diffraction

Procedia PDF Downloads 323
5636 Analysis and Design of Offshore Met Mast Supported on Jacket Substructure

Authors: Manu Manu, Pardha J. Saradhi, Ramana M. V. Murthy

Abstract:

Wind Energy is accepted as one of the most developed, cost effective and proven renewable energy technologies to meet increasing electricity demands in a sustainable manner. Preliminary assessment studies along Indian Coastline by Ministry of New and Renewable Energy have indicated prospects for development of offshore wind power along Tamil Nadu Coast, India. The commercial viability of a wind project mainly depends on wind characteristics on site. Hence, it is internationally recommended to perform site-specific wind resource assessment based on two years’ wind profile as a part of the feasibility study. Conventionally, guy wire met mast are used onshore for the collection of wind profile. Installation of similar structure in offshore requires complex marine spread and are very expensive. In the present study, an attempt is made to develop 120 m long lattice tower supported on the jacket, piled to the seabed at Rameshwaram, Tamil Nadu, India. Offshore met-masts are subjected to combined wind and hydrodynamic loads, and these lateral loads should be safely transferred to soil. The wind loads are estimated based on gust factor method, and the hydrodynamic loads are estimated by Morison’s equation along with suitable wave theory. The soil is modeled as three nonlinear orthogonal springs based on API standards. The structure configuration and optimum member sizes are obtained for extreme cyclone events. The dynamic behavior of mast under coupled wind and wave loads is also studied. The static responses of a mast with jacket type offshore platform have been studied using a frame model in SESAM. It is found from the study that the maximum displacement at the top of the mast for the random wave is 0.003 m and that of the tower for wind is 0.08 m during the steady state. The dynamic analysis results indicate that the structure is safe against coupled wind and wave loading.

Keywords: offshore wind, mast, static, aerodynamic load, hydrodynamic load

Procedia PDF Downloads 183
5635 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 214
5634 Modified DNA as a Base Material for Nonlinear Optics

Authors: Ewelina Nowak, Anna Wisla-Swider

Abstract:

Deoxyribonucleic acid (DNA) is a biomolecule which exhibits an electro-optic properties. These features are related with structure of double-stranded helix. Modification of DNA with ionic liquids allows intensify these properties. The aim of our study was synthesis of ionic liquids that are used the formation of DNA-surfactant complexes in order to obtain new materials with potential application for nonlinear optics. Complexes were achieved through the ion exchange reactions of carbazole-based and imidazole-based ionic liquids with H+ ions from salmon DNA. To examination the properties of obtained complexes DNA-ionic liquids there were investigated using circular dichroism (CD), UV-Vis spectra and infrared spectroscopy (IR). Additionally, the resulting DNA-surfactant complexes were characterized in terms of solubility in common organic solvents and water.

Keywords: deoxyribonucleic acid, biomolecule, carbazole, imidazole, ionic liquids, ion exchange reactions

Procedia PDF Downloads 441
5633 Identifying Chaotic Architecture: Origins of Nonlinear Design Theory

Authors: Mohammadsadegh Zanganehfar

Abstract:

Since the modernism, movement, and appearance of modern architecture, an aggressive desire for a general design theory in the theoretical works of architects in the form of books and essays emerges. Since Robert Venturi and Denise Scott Brown’s published complexity and contradiction in architecture in 1966, the discourse of complexity and volumetric composition has been an important and controversial issue in the discipline. Ever since various theories and essays were involved in this discourse, this paper attempt to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. As a result, we identify chaotic architecture as the correlation of chaos theory and architecture as an independent nonlinear design theory with specific characteristics and properties.

Keywords: architecture complexity, chaos theory, fractals, nonlinear dynamic systems, nonlinear ontology

Procedia PDF Downloads 345
5632 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 410
5631 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)

Procedia PDF Downloads 401
5630 Four-Electron Auger Process for Hollow Ions

Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola

Abstract:

A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.

Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method

Procedia PDF Downloads 130
5629 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G technology, array antenna, microstrip, millimeter wave

Procedia PDF Downloads 280
5628 Ground Water Monitoring Using High-Resolution Fiber Optics Cable Sensors (FOCS)

Authors: Sayed Isahaq Hossain, K. T. Chang, Moustapha Ndour

Abstract:

Inference of the phreatic line through earth dams is of paramount importance because it could be directly associated with piping phenomena which may lead to the dam failure. Normally in the field, the instrumentations such as ‘diver’ and ‘standpipe’ are to be used to identify the seepage conditions which only provide point data with a fair amount of interpolation or assumption. Here in this paper, we employed high-resolution fiber optic cable sensors (FOCS) based on Raman Scattering in order to obtain a very accurate phreatic line and seepage profile. Unlike the above-mention devices which pinpoint the water level location, this kind of Distributed Fiber Optics Sensing gives us more reliable information due to its inherent characteristics of continuous measurement.

Keywords: standpipe, diver, FOCS, monitoring, Raman scattering

Procedia PDF Downloads 326
5627 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation

Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj

Abstract:

As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.

Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH

Procedia PDF Downloads 128
5626 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 159
5625 Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode

Authors: Illyas Md Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II).

Keywords: chemically modified electrode, Cu(II), square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 247
5624 Delisting Wave: Corporate Financial Distress, Institutional Investors Perception and Performance of South African Listed Firms

Authors: Adebiyi Sunday Adeyanju, Kola Benson Ajeigbe, Fortune Ganda

Abstract:

In the past three decades, there has been a notable increase in the number of firms delisting from the Johannesburg Stock Exchange (JSE) in South Africa. The recent increasing rate of delisting waves of corporate listed firms motivated this study. This study aims to explore the influence of institutional investor perceptions on the financial distress experienced by delisted firms within the South African market. The study further examined the impact of financial distress on the corporate performance of delisted firms. Using the data of delisted firms spanning from 2000 to 2023 and the FGLS (Feasible Generalized Least Squares) for the short run and PCSE (Panel-Corrected Standard Errors) for the long run effects of the relationship. The finding indicated that a decline in institutional investors’ perceptions was associated with the corporate financial distress of the delisted firms, particularly during the delisting year and the few years preceding the announcement of the delisting. This study addressed the importance of investor recognition in corporate financial distress and the delisting wave among listed firms- a finding supporting the stakeholder theory. This study is an insight for companies’ managements, investors, governments, policymakers, stockbrokers, lending institutions, bankers, the stock market, and other stakeholders in their various decision-making endeavours. Based on the above findings, it was recommended that corporate managements should improve their governance strategies that can help companies’ financial performances. Accountability and transparency through governance must also be improved upon with government support through the introduction of policies and strategies and enabling an easy environment that can help companies perform better.

Keywords: delisting wave, institutional investors, financial distress, corporate performance, investors’ perceptions

Procedia PDF Downloads 17
5623 Prophet and Philosopher Mohammed: A Precursor of Feminism

Authors: Mohammad Mozammel Haque

Abstract:

That feminism is nothing but the name of a belief that women should have the same rights as men needs no telling. The history of modern western feminism is divided into three waves and each is described as dealing with different aspects of the same feminist issues. The first wave refers to the movement of the 19th through early 20th centuries, which dealt mainly with suffrage, working conditions and educational rights for women. The second wave (1960s-1980s) dealt with the inequality of laws and the role of women in society. The third wave (late 1980s-early 2000s) is seen as both a continuation of the second wave and a response to the perceived failures. Mary Wollstonecraft struggled for the emancipation and freedom of the women of Europe, Begum Rokeya brought about revolution for the women of the East and West Bengal, Jeremy Bentham wrote for the independence of women in England. But if feminism refers to the movement of giving women what they deserve, then it won’t be an overstatement to state that Mohammad is the precursor of what we call feminism. This paper investigates the background of official starting of feminism, and also the backdrop of the women of Muhammad’s time. The article, besides showing that this great prophet and philosopher firstly brought about a movement for the education and rights of women and took them out of grave where they were buried alive, also delineates Mohammedan endeavours he attempted to give the women what they ought to have.

Keywords: education, equality, feminism, precursor

Procedia PDF Downloads 471
5622 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum

Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei

Abstract:

An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.

Keywords: dislocation density, quasi-elastic release, wave profile, shock wave

Procedia PDF Downloads 252
5621 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces

Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid

Abstract:

We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.

Keywords: dam-break problems, finite volume method, run-up waves, shallow water flows, wet/dry interfaces

Procedia PDF Downloads 124
5620 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions

Authors: Edamana Krishnan, Khalil Al-Ghafri

Abstract:

In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.

Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods

Procedia PDF Downloads 281
5619 Objectifying Media and Preadolescents' Media Internalization: A Developmental Perspective

Authors: Ann Rousseau, Steven Eggermont

Abstract:

The current study sought to explain pre-adolescents’ differential susceptibility to the internalization of mediated appearance ideals, using a three-wave panel survey of preadolescent girls and boys (N = 973, Mage = 11.14). Based on the premises of objectification theory and sexual script theory, we proposed a double role for pubertal timing and cross-sex interactions in preadolescents’ media internalization. More specifically, we expected pubertal timing and cross-sex interactions to (a) trigger higher levels of media internalization, directly and indirectly via body surveillance, and (b) positively moderate the relationship between objectifying media exposure and girls’ and boys’ media internalization. A first cross-lagged model tested whether the pubertal timing and cross-sex interactions could trigger preadolescents media internalization and body surveillance. Structural equation analysis indicated that pubertal timing (Wave1) positively predicted body surveillance and media internalization (both Wave3). Cross-sex involvement (Wave1) was positively linked to media internalization (Wave2), but body surveillance (Wave2) was not associated with cross-sex interactions. Results also showed a reciprocal interaction between media internalization (Wave 2 and 3) and body surveillance (Wave2 and 3). Multiple group analysis showed that the observed relationships did not vary by gender. A second moderated moderation model examined whether (a) the relationship between objectifying media exposure (television and magazines, both Wave1) and media internalization (Wave3) depended on pubertal timing (Wave1), and (b) the two-way interaction between objectifying media exposure (Wave1) and pubertal timing (Wave1) varied depending on cross-sex interactions (Wave1). Results revealed that cross-sex interactions functioned as a buffer against media internalization. For preadolescents who had fewer cross-sex interactions, early puberty (relative to peers) positively moderated the relationship between magazine exposure and the internalization of mediated appearance ideals. No significant relationships were found for television. Again, no gender difference could be observed. The present study suggests a double role for pubertal timing and cross-sex interactions in preadolescents media internalization, and indicate that early developers with few cross-sex experiences are particularly vulnerable for media internalization. Additionally, the current findings suggest that there is relative gender equity in magazines’ ability to cultivate media internalization among preadolescents.

Keywords: cross-sex interactions, media effects, objectification theory, pubertal timing

Procedia PDF Downloads 304
5618 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria

Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti

Abstract:

We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.

Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence

Procedia PDF Downloads 332
5617 Investigating Viscous Surface Wave Propagation Modes in a Finite Depth Fluid

Authors: Arash Ghahraman, Gyula Bene

Abstract:

The object of this study is to investigate the effect of viscosity on the propagation of free-surface waves in an incompressible viscous fluid layer of arbitrary depth. While we provide a more detailed study of properties of linear surface waves, the description of fully nonlinear waves in terms of KdV-like (Korteweg-de Vries) equations is discussed. In the linear case, we find that in shallow enough fluids, no surface waves can propagate. Even in any thicker fluid layers, propagation of very short and very long waves is forbidden. When wave propagation is possible, only a single propagating mode exists for any given horizontal wave number. The numerical results show that there can be two types of non-propagating modes. One type is always present, and there exist still infinitely many of such modes at the same parameters. In contrast, there can be zero, one or two modes belonging to the other type. Another significant feature is that KdV-like equations. They describe propagating nonlinear viscous surface waves. Since viscosity gives rise to a new wavenumber that cannot be small at the same time as the original one, these equations may not exist. Nonetheless, we propose a reasonable nonlinear description in terms of 1+1 variate functions that make possible successive approximations.

Keywords: free surface wave, water waves, KdV equation, viscosity

Procedia PDF Downloads 126
5616 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations

Authors: Reza Soleimanpour, Ching Tai Ng

Abstract:

Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.

Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves

Procedia PDF Downloads 177
5615 Boundary Conditions for 2D Site Response Analysis in OpenSees

Authors: M. Eskandarighadi, C. R. McGann

Abstract:

It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions.

Keywords: boundary condition, free-field, massive columns, opensees, site response analysis, wave propagation

Procedia PDF Downloads 128
5614 Estimation of Shear Wave Velocity from Cone Penetration Test for Structured Busan Clays

Authors: Vinod K. Singh, S. G. Chung

Abstract:

The degree of structuration of Busan clays at the mouth of Nakdong River mouth was highly influenced by the depositional environment, i.e., flow of the river stream, marine regression, and transgression during the sedimentation process. As a result, the geotechnical properties also varies along the depth with change in degree of structuration. Thus, the in-situ tests such as cone penetration test (CPT) could not be used to predict various geotechnical properties properly by using the conventional empirical methods. In this paper, the shear wave velocity (Vs) was measured from the field using the seismic dilatometer. The Vs was also measured in the laboratory from high quality undisturbed and remolded samples using bender element method to evaluate the degree of structuration. The degree of structuration was quantitatively defined by the modulus ratio of undisturbed to remolded soil samples which is found well correlated with the normalized void ratio (e0/eL) where eL is the void ratio at the liquid limit. It is revealed that the empirical method based on laboratory results incorporating e0/eL can predict Vs from the field more accurately. Thereafter, the CPT based empirical method was developed to estimate the shear wave velocity taking the effect of structuration in the consideration. The developed method was found to predict shear wave velocity reasonably for Busan clays.

Keywords: level of structuration, normalized modulus, normalized void ratio, shear wave velocity, site characterization

Procedia PDF Downloads 210