Search results for: virtual items
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2240

Search results for: virtual items

2000 Designing Supplier Partnership Success Factors in the Coal Mining Industry

Authors: Ahmad Afif, Teuku Yuri M. Zagloel

Abstract:

Sustainable supply chain management is a new pattern that has emerged recently in industry and companies. The procurement process is one of the key factors for efficiency in supply chain management practices. Partnership is one of the procurement strategies for strategic items. The success factors of the partnership must be determined to avoid things that endanger the financial and operational status of the company. The current supplier partnership research focuses on the selection of general criteria and sustainable supplier selection. Currently, there is still limited research on the success factors of supplier partnerships that focus on strategic items in the coal mining industry. Meanwhile, the procurement of coal mining has its own characteristics, and there are regulations related to the procurement of goods. Therefore, this research was conducted to determine the categories of goods that are included in the strategic items and to design the success factors of supplier partnerships. The main factors studied are general, financial, production, reputation, synergies, and sustainable. The research was conducted using the Kraljic method to determine the categories of goods that are included in the strategic items. To design a supplier partnership success factor using the Hybrid Multi Criteria Decision Making method. Integrated Fuzzy AHP-Fuzzy TOPSIS is used to determine the weight of the success factors of supplier partnerships and to rank suppliers on the factors used.

Keywords: supplier, partnership, strategic item, success factors, and coal mining industry

Procedia PDF Downloads 109
1999 E–Learning System in Virtual Learning Environment to Develop Problem Solving Ability and Team Learning for Learners in Higher Education

Authors: Noawanit Songkram

Abstract:

This paper is a report on the findings of a study conducted on e–learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education. The methodology of this study was R&D research. The subjects were 18 undergraduate students in Faculty of Education, Chulalongkorn University in the academic year of 2013. The research instruments were a problem solving ability assessment, a team learning evaluation form, and an attitude questionnaire. The data was statistically analyzed using mean, standard deviation, one way repeated measure ANOVA and t–test. The research findings discovered the e –learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education consisted of five components:(1) online collaborative tools, (2) active learning activities, (3) creative thinking, (4) knowledge sharing process, (5) evaluation and nine processes which were (1) preparing in group working, (2) identifying interested topic, (3) analysing interested topic, (4) collecting data, (5) concluding idea (6) proposing idea, (7) creating workings, (8) workings evaluation, (9) sharing knowledge from empirical experience.

Keywords: e-learning system, problem solving ability, team leaning, virtual learning environment

Procedia PDF Downloads 415
1998 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items

Authors: Wen-Chung Wang, Xue-Lan Qiu

Abstract:

Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.

Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison

Procedia PDF Downloads 228
1997 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: virtual reality, student assessment, medical education, 3D, embryology

Procedia PDF Downloads 158
1996 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.

Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection

Procedia PDF Downloads 227
1995 Development of Visual Working Memory Precision: A Cross-Sectional Study of Simultaneously Delayed Responses Paradigm

Authors: Yao Fu, Xingli Zhang, Jiannong Shi

Abstract:

Visual working memory (VWM) capacity is the ability to maintain and manipulate short-term information which is not currently available. It is well known for its significance to form the basis of numerous cognitive abilities and its limitation in holding information. VWM span, the most popular measurable indicator, is found to reach the adult level (3-4 items) around 12-13 years’ old, while less is known about the precision development of the VWM capacity. By using simultaneously delayed responses paradigm, the present study investigates the development of VWM precision among 6-18-year-old children and young adults, besides its possible relationships with fluid intelligence and span. Results showed that precision and span both increased with age, and precision reached the maximum in 16-17 age-range. Moreover, when remembering 3 simultaneously presented items, the probability of remembering target item correlated with fluid intelligence and the probability of wrap errors (misbinding target and non-target items) correlated with age. When remembering more items, children had worse performance than adults due to their wrap errors. Compared to span, VWM precision was effective predictor of intelligence even after controlling for age. These results suggest that unlike VWM span, precision developed in a slow, yet longer fashion. Moreover, decreasing probability of wrap errors might be the main reason for the development of precision. Last, precision correlated more closely with intelligence than span in childhood and adolescence, which might be caused by the probability of remembering target item.

Keywords: fluid intelligence, precision, visual working memory, wrap errors

Procedia PDF Downloads 252
1994 A Study of Lurking Behavior: The Desire Perspective

Authors: Hsiu-Hua Cheng, Chi-Wei Chen

Abstract:

Lurking behaviour is common in information-seeking oriented communities. Transferring users with lurking behaviour to be contributors can assist virtual communities to obtain competitive advantages. Based on the ecological cognition framework, this study proposes a model to examine the antecedents of lurking behaviour in information-seeking oriented virtual communities. This study argues desire for emotional support, desire for information support, desire for performance-approach, desire for performance -avoidance, desire for mastery-approach, desire for mastery-avoidance, desire for ability trust, desire for benevolence trust, and desire for integrity trust effect on lurking behaviour. This study offers an approach to understanding the determinants of lurking behaviour in online contexts.

Keywords: lurking behaviour, the ecological cognition framework, Information-seeking oriented virtual communities, desire

Procedia PDF Downloads 248
1993 ‘Nature Will Slow You Down for a Reason’: Virtual Elder-Led Support Services during COVID-19

Authors: Grandmother Roberta Oshkawbewisens, Elder Isabelle Meawasige, Lynne Groulx, Chloë Hamilton, Lee Allison Clark, Dana Hickey, Wansu Qiu, Jared Leedham, Nishanthini Mahendran, Cameron Maclaine

Abstract:

In March of 2020, the world suddenly shifted with the onset of the COVID-19 pandemic; in-person programs and services were unavailable and a scramble to shift to virtual service delivery began. The Native Women’s Association of Canada (NWAC) established virtual programming through the Resiliency Lodge model and connected with Indigenous women, girls, Two-Spirit, transgender, and gender-diverse people across Turtle Island and Inuit Nunangat through programs that provide a safe space to slow down and reflect on their lives, environment, and well-being. To continue to grow the virtual Resiliency Lodge model, NWAC needed to develop an understanding of three questions: how COVID-19 affects Elder-led support services, how Elder-led support services have adapted during the pandemic, and what Wise Practices need to be implemented to continue to develop, refine, and evaluate virtual Elder-led support services specifically for Indigenous women, girls, two-Spirit, transgender, and gender-diverse people. Through funding from the Canadian Institute of Health Research (CIHR), NWAC gained deeper insight into these questions and developed a series of key findings and recommendations that are outlined throughout this report. The goals of this project are to contribute to a more robust participatory analysis that reflects the complexities of Elder-led virtual cultural responses and the impacts of COVID-19 on Elder-led support services; develop culturally and contextually meaningful virtual protocols and wise practices for virtual Indigenous-led support; and develop an Evaluation Strategy to improve the capacity of the Resiliency Lodge model. Significant findings from the project include Resiliency Lodge programs, especially crafting and business sessions, have provided participants with a sense of community and contributed to healing and wellness; Elder-led support services need greater and more stable funding to offer more workshops to more Indigenous women, girls, Two-Spirit, transgender, and gender-diverse people; and Elder- and Indigenous-led programs play a significant role in healing and building a sense of purpose and belonging among Indigenous people. Ultimately, the findings and recommendations outlined in this research project help to guide future Elder-led virtual support services and emphasize the critical need to increase access to Elder-led programming for Indigenous women, girls, Two-Spirit, transgender, and gender-diverse people.

Keywords: indigenous women, traditional healing, virtual programs, covid-19

Procedia PDF Downloads 104
1992 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation

Authors: N. Lebga, Kh. Bouamama, K. Kassali

Abstract:

We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.

Keywords: density functional theory, elastic properties, ZnS, ZnSe,

Procedia PDF Downloads 549
1991 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations

Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau

Abstract:

The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.

Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device

Procedia PDF Downloads 321
1990 Tourism Industry in Pakistan: Challenges Faced and Future Prospects

Authors: Misbah Shaheen, Anam Qureshi

Abstract:

In this work we will discuss the challenges faced by tourism industry in Pakistan. Tourism plays vital role in the socio-economic growth of a country. The countries of world, with less tourism opportunities are lagging behind from other nations of the world. Pakistan is one of those countries which rich in historical places, natural beauty, and uniqueness in handmade items and also of green forests. Present study will discuss the challenges being faced by tourism industry with special focus on hotel industry and law and order situation.

Keywords: Pakistan, tourism, handmade items, hotel industry

Procedia PDF Downloads 363
1989 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 26
1988 A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes

Authors: Ali Asgary, Haopeng Zhou, Ghassem Tofighi

Abstract:

Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage.

Keywords: virtual reality, earthquake damage, building content, indoor risks, earthquake risk mitigation, interior design, unity game engine, oculus

Procedia PDF Downloads 60
1987 Use of Cloud-Based Virtual Classroom in Connectivism Learning Process to Enhance Information Literacy and Self-Efficacy for Undergraduate Students

Authors: Kulachai Kultawanich, Prakob Koraneekij, Jaitip Na-Songkhla

Abstract:

The way of learning has been changed into a new paradigm since the improvement of network and communication technology, so learners have to interact with massive amount of the information. Thus, information literacy has become a critical set of abilities required by every college and university in the world. Connectivism is considered to be an alternative way to design information literacy course in online learning environment, such as Virtual Classroom (VC). With the change of learning pedagogy, VC is employed to improve the social capability by integrating cloud-based technology. This paper aims to study the use of Cloud-based Virtual Classroom (CBVC) in Connectivism learning process to enhance information literacy and self-efficacy of twenty-one undergraduate students who registered in an e-publishing course at Chulalongkorn University. The data were gathered during 6 weeks of the study by using the following instruments: (1) Information literacy test (2) Information literacy rubrics (3) Information Literacy Self-Efficacy (ILSE) Scales and (4) Questionnaire. The result indicated that students have information literacy and self-efficacy posttest mean scores higher than pretest mean scores at .05 level of significant after using CBVC in Connectivism learning process. Additionally, the study identified that the Connectivism learning process proved useful for developing information rich environment and a sense of community, and the CBVC proved useful for developing social connection.

Keywords: cloud-based, virtual classroom, connectivism, information literacy

Procedia PDF Downloads 428
1986 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 92
1985 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 52
1984 Ready Student One! Exploring How to Build a Successful Game-Based Higher Education Course in Virtual Reality

Authors: Robert Jesiolowski, Monique Jesiolowski

Abstract:

Today more than ever before, we have access to new technologies which provide unforeseen opportunities for educators to pursue in online education. It starts with an idea, but that needs to be coupled with the right team of experts willing to take big risks and put in the hard work to build something different. An instructional design team was empowered to reimagine an Introduction to Sociology university course as a Game-Based Learning (GBL) experience utilizing cutting edge Virtual Reality (VR) technology. The result was a collaborative process that resulted in a type of learning based in Game theory, Method of Loci, and VR Immersion Simulations to promote deeper retention of core concepts. The team deconstructed the way that university courses operated, in order to rebuild the educational process in a whole learner-centric manner. In addition to a review of the build process, this paper will explore the results of in-course surveys completed by student participants.

Keywords: higher education, innovation, virtual reality, game-based learning, loci method

Procedia PDF Downloads 58
1983 Effects of Aging on Auditory and Visual Recall Abilities

Authors: Rashmi D. G., Aishwarya G., Niharika M. K.

Abstract:

Purpose: Free recall tasks target cognitive and linguistic processes like episodic memory, lexical access and retrieval. Consequently, the free recall paradigm is suitable for assessing memory deterioration caused by aging; this also depends on linguistic factors, including the use of first and second languages and their relative ability. Hence, the present study aimed to determine if aging has an effect on visual and auditory recall abilities. Method: Twenty young adults (mean age: 25.4±0.99) and older adults (mean age: 63.3±3.51) participated in the study. Participants performed a free recall task under two conditions – related and unrelated and two modalities - visual and auditory where they were instructed to recall as many items as possible with no specific order and time limit. Results: Free recall performance was calculated as the mean number of correctly recalled items. Although younger participants recalled a higher number of items, the performance across conditions and modality was variable. Conclusion: In summary, the findings of the present study revealed an age-related decline in the efficiency of episodic memory, which is crucial to remember recent events.

Keywords: recall, episodic memory, aging, modality

Procedia PDF Downloads 68
1982 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 77
1981 Validity and Reliability of the Iranian Version of the Self-Expansion Questionnaire

Authors: Mehravar Javid, James Sexton, Farzaneh Amani, Kainaz Patravala

Abstract:

Self-expansion is a procedure through which people expand the dimensions of their self-concept by incorporating novel content into their sense and experience of identity. Greater self-expansion predicts positive consequences for individuals and romantic relationships. The self-expansion questionnaire (SEQ) originally developed by Lewandowski & Aron (2002) assumes that self-expansion is constituted of key components from the self-expansion model. This study aimed to confirm the factor structure of SEQ and adapt the questions of the scale to the Iranian culture. The sample included 190 participants who responded to 14 items and were selected by simple random sampling. Using Amos-21 and SPSS-21, descriptive statistics, Pearson correlation and Confirmatory Factor Analysis (CFA) were calculated. Cronbach’s alpha coefficient for total SEQ items was 0.92. Results of CFA supported the factor structure SEQ [RMSEA=0.08, GFI=0.88 and CFI=0.92] that showed the model has a good fit and also all the items of SEQ, have a high correlation and have a direct and significant relationship. So, the SEQ demonstrated acceptable psychometric properties in Tehran University students. Looking forward, it would be interesting and exciting to see the implications of the scale as applied to romantic relationships.

Keywords: validity, reliability, confirmatory factor analysis, self-expansion questionnaire

Procedia PDF Downloads 51
1980 An Analysis of the Panel’s Perceptions on Cooking in “Metaverse Kitchen”

Authors: Minsun Kim

Abstract:

This study uses the concepts of augmented reality, virtual reality, mirror world, and lifelogging to describe “Metaverse Kitchen” that can be defined as a space in the virtual world where users can cook the dishes they want using the meal kit regardless of location or time. This study examined expert’s perceptions of cooking and food delivery services using "Metaverse Kitchen." In this study, a consensus opinion on the concept, potential pros, and cons of "Metaverse Kitchen" was derived from 20 culinary experts through the Delphi technique. The three Delphi rounds were conducted for one month, from December 2022 to January 2023. The results are as follows. First, users select and cook food after visiting the "Metaverse Kitchen" in the virtual space. Second, when a user cooks in "Metaverse Kitchen" in AR or VR, the information is transmitted to nearby restaurants. Third, the platform operating the "Metaverse Kitchen" assigns the order to the restaurant that can provide the meal kit cooked by the user in the virtual space first in the same way among these restaurants. Fourth, the user pays for the "Metaverse Kitchen", and the restaurant delivers the cooked meal kit to the user and then receives payment for the user's meal and delivery fee from the platform. Fifth, the platform company that operates the mirror world "Metaverse Kitchen" uses lifelogging to manage customers. They receive commissions from users and affiliated restaurants and operate virtual restaurant businesses using meal kits. Among the selection attributes for meal kits provided in "Metaverse Kitchen", the panelists suggested convenience, quality, and reliability as advantages and predicted relatively high price as a disadvantage. "Metaverse Kitchen" using meal kits is expected to form a new food supply system in the future society. In follow-up studies, an empirical analysis is required targeting producers and consumers.

Keywords: metaverse, meal kits, Delphi technique, Metaverse Kitchen

Procedia PDF Downloads 190
1979 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching

Authors: Enrique Barra, Aldo Gordillo, Juan Quemada

Abstract:

This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.

Keywords: e-learning, platform, authoring tool, science teaching, educational sciences

Procedia PDF Downloads 365
1978 Proposal for Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair

Authors: Adetoba B. Tiwalola, Adedeji W. Oyediran, Yekini N. Asafe, Akinwole A. Kikelomo

Abstract:

Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for knowledge sharing among automobile users.

Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community

Procedia PDF Downloads 412
1977 Design and Validation of the 'Teachers' Resilience Scale' for Assessing Protective Factors

Authors: Athena Daniilidou, Maria Platsidou

Abstract:

Resilience is considered to greatly affect the personal and occupational wellbeing and efficacy of individuals; therefore, it has been widely studied in the social and behavioral sciences. Given its significance, several scales have been created to assess resilience of children and adults. However, most of these scales focus on examining only the internal protective or risk factors that affect the levels of resilience. The aim of the present study is to create a reliable scale that assesses both the internal and the external protective factors that affect Greek teachers’ levels of resilience. Participants were 136 secondary school teachers (89 females, 47 males) from urban areas of Greece. Connor-Davidson Resilience Scale (CD-Risc) and Resilience Scale for Adults (RSA) were used to collect the data. First, exploratory factor analysis was employed to investigate the inner structure of each scale. For both scales, the analyses revealed a differentiated factor solution compared to the ones proposed by the creators. That prompt us to create a scale that would combine the best fitting subscales of the CD-Risc and the RSA. To this end, the items of the four factors with the best fit and highest reliability were used to create the ‘Teachers' resilience scale’. Exploratory factor analysis revealed that the scale assesses the following protective/risk factors: Personal Competence and Strength (9 items, α=.83), Family Cohesion Spiritual Influences (7 items, α=.80), Social Competence and Peers Support (7 items, α=.78) and Spiritual Influence (3 items, α=.58). This four-factor model explained 49,50% of the total variance. In the next step, a confirmatory factor analysis was performed on the 26 items of the derived scale to test the above factor solution. The fit of the model to the data was good (χ2/292 = 1.245, CFI = .921, GFI = .829, SRMR = .074, CI90% = .026-,056, RMSEA = 0.43), indicating that the proposed scale can validly measure the aforementioned four aspects of teachers' resilience and thus confirmed its factorial validity. Finally, analyses of variance were performed to check for individual differences in the levels of teachers' resilience in relation to their gender, age, marital status, level of studies, and teaching specialty. Results were consistent to previous findings, thus providing an indication of discriminant validity for the instrument. This scale has the advantage of assessing both the internal and the external protective factors of resilience in a brief yet comprehensive way, since it consists 26 items instead of the total of 58 of the CD-Risc and RSA scales. Its factorial inner structure is supported by the relevant literature on resilience, as it captures the major protective factors of resilience identified in previous studies.

Keywords: protective factors, resilience, scale development, teachers

Procedia PDF Downloads 277
1976 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 91
1975 Enhancing VR Exposure Therapy for the Treatment of Phobias with the Use of Photorealistic VR Environments and Stimuli, and the Use of Tactile Feedback Suits and Responsive Systems

Authors: Vardan Melkonyan, Arman Azizyan, Astghik Boyajyan

Abstract:

Virtual reality (VR) exposure therapy is a form of cognitive-behavioral therapy that uses immersive virtual environments to expose individuals to the feared stimuli or situations that trigger their phobia. VR exposure therapy has become an increasingly popular treatment for phobias, including fear of heights, public speaking, and flying, due to its ability to provide a controlled and safe environment for individuals to confront their fears while also allowing therapists to tailor the virtual exposure to the specific needs and goals of each individual. It is also a cost-effective and accessible treatment option, as it can be delivered remotely and does not require the use of drugs. Overall, VR exposure therapy has the potential to be a valuable tool for therapists in the treatment of phobias. But current methods may be improved by incorporating advanced technology such as photorealistic VR environments, tactile feedback suits, and responsive systems. The aim of this study was to identify the most effective approach for enhancing VR exposure therapy for the treatment of phobias. Photorealistic VR environments and stimuli can greatly enhance the effectiveness of VR exposure therapy for the treatment of phobias. By creating immersive, realistic virtual environments that closely mimic the real-life situations that trigger phobia responses, patients are able to more fully engage in the therapeutic process and confront their fears in a controlled and safe manner. This can help to reduce the severity of phobia symptoms and increase treatment outcomes. The use of tactile feedback suits and responsive systems can further enhance the VR exposure therapy experience by adding a physical element to the virtual environment. These suits, which can mimic the sensations of touch, pressure, and movement, allow patients to fully immerse themselves in the virtual world and feel as if they are physically present in the situation. This can help to increase the realism of the virtual environment and make it more effective in reducing phobia symptoms. Additionally, responsive systems can be used to trigger specific events or responses within the virtual environment based on the patient's actions, providing a more interactive and personalized treatment experience. A comprehensive literature review was conducted, including studies on VR exposure therapy for phobias and the use of advanced technology to enhance the therapy. Results indicate that incorporating these enhancements may significantly increase the effectiveness of VR exposure therapy for phobias. Further research is needed to fully understand the potential of these enhancements and to determine the optimal combination and implementation.

Keywords: virtual reality, mental health, phobias, fears, treatment, photorealistic, immersive, phobia

Procedia PDF Downloads 57
1974 Virtual Reality for Post COVID-19 Stroke: A Case Report

Authors: Kasra Afsahi, Maryam Soheilifar

Abstract:

COVID-19 has been associated with stroke and neurological complications. The patient was a 59-year- old male who presented with sudden left hemiparesis and diplopia due to cavernous sinus thrombosis (CST) on 28/03/2020. The COVID-19 test was positive. Multislice CT (MSCT) showed ischemic infarction. He underwent surgical sinectomy 9 days after admission. Physiotherapy began for him in August 2020. Our game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and function for stroke. After 6 weeks of VR therapy plus conventional physiotherapy exercises (18 sessions, three times per week, 60 minutes each session), there were significant improvements in Brunnstrom Motor Recovery Stage (from “4” to “5”), Fugl-Meyer Scale score of upper extremity section (from 49 to 54), and Modified Barthel Index (from15 to 18). There were no adverse effects. This case with stroke post-COVID-19 due to the CST showed the usefulness of VR therapy used as an adjunct to conventional physiotherapy in improving affected upper extremity.

Keywords: COVID-19, stroke, virtual reality, rehabilitation

Procedia PDF Downloads 159
1973 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database

Procedia PDF Downloads 209
1972 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality

Authors: Danielle Schneider, Ying Xie

Abstract:

Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.

Keywords: virtual reality, spatial reasoning, CAD, middle school STEM

Procedia PDF Downloads 53
1971 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla

Abstract:

Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.

Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning

Procedia PDF Downloads 116