Search results for: vibrational dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2990

Search results for: vibrational dynamics

2990 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field

Authors: Sedrak Vardanyan

Abstract:

The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.

Keywords: bending vibrational frequencies, exact space treatment, free vibrations, magnetic cylindrical shells

Procedia PDF Downloads 279
2989 Temperature Measurements of Corona Discharge in the SF6-N2 Gas Mixture

Authors: A. Lemzadmi

Abstract:

Rotational and vibrational temperatures of the SF6-N2 gas mixture are spectroscopically measured over a pressure range of 2-14 bars. The spectra obtained of the light emission of the corona discharge were recorded with different values of pressure, voltage and current together with the variation of the position of the tip electrode. The emission of N2 is very dominant for different gas concentration and the second positive system 2S+ is the most important. The convolution method is used for the determination of the temperature. The Rotational temperature measurements of the plasma reveal gas temperatures in the range of 450-650°K and vibrational temperatures in the range of 1800-2200°K.

Keywords: rotational temperatures, corona discharges, SF6-N2 gas mixture, vibrational temperatures

Procedia PDF Downloads 462
2988 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering

Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu

Abstract:

Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.

Keywords: neutron scattering, vibrational dynamics, computational physics, material science

Procedia PDF Downloads 32
2987 Laser Cooling of Internal Degrees of Freedom of Molecules: Cesium Case

Authors: R. Horchani

Abstract:

Optical pumping technique with laser fields combined with photo-association of ultra-cold atoms leads to control on demand the vibrational and/or the rotational population of molecules. Here, we review the basic concepts and main steps should be followed, including the excitation schemes and detection techniques we use to achieve the ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments since they allow the optimization of several important experimental parameters.

Keywords: cold molecule, photo-association, optical pumping, vibrational and rotational cooling

Procedia PDF Downloads 298
2986 Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy

Authors: H. Lee, Jr., L. Bo-ot, R. Tumlos, H. Ramos

Abstract:

The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates.

Keywords: plasma jet, OES, Boltzmann plots, vibrational temperatures

Procedia PDF Downloads 712
2985 The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications

Authors: Ayesha Asma, Aqsa Arooj

Abstract:

It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications.

Keywords: structural, optimized, vibrational, ultraviolet

Procedia PDF Downloads 41
2984 Quantum Localization of Vibrational Mirror in Cavity Optomechanics

Authors: Madiha Tariq, Hena Rabbani

Abstract:

Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.

Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field

Procedia PDF Downloads 149
2983 Ab Initio Spectroscopic Study of the Electronic Properties of the (Bana)+ Molecular Ion

Authors: Tahani H. Alluhaybi, Leila Mejrissi

Abstract:

In the present theoretical study, we investigated adiabatically the electronic structure of the (BaNa)+ by the use of the ab initio calculation. We optimized a large atomic GTO basis set for Na and Ba atoms. The (BaNa)+ molecular ion is considered a two-electron thank to a non-empirical pseudo-potentials approach applied to Ba and Na cores with the Core Polarization Potentials operator (CPP). Then, we performed the Full Configuration Interaction (FCI) method. Accordingly, we calculated the adiabatic Potential Energy Curves (PECs) and their spectroscopic constants (well depth De, transition energies Te, the equilibrium distances Re, vibrational constant ⍵e, and anharmonic constant ⍵exe) for 10 electronic states in Σ+ symmetry. Then we determined the vibrational level energies and their spacing, and the electric Permanent Dipole Moments (PDM).

Keywords: Ab initio, dipole moment, non-empirical pseudo-potential, potential energy curves, spectroscopic constants, vibrational energy

Procedia PDF Downloads 110
2982 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method

Authors: Khaled Bahgat

Abstract:

In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations

Procedia PDF Downloads 472
2981 Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell

Authors: Yu-Hsi Huang, Ying-Der Tsai

Abstract:

Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell.

Keywords: piezoelectric semi-spherical shell, mode shape, resonant frequency, electronic speckle pattern interferometry, radial vibration, azimuthal vibration

Procedia PDF Downloads 234
2980 The Effects of the Aspect Ratio of a Flexible Cylinder on the Vortex Dynamics

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

The vortex structures observed in the wake of a flexible cylinder can be significantly different from those of a traditional vibrating, spring mounted, rigid cylinder. These differences can significantly affect the VIV characteristics of the flow and subsequently the VIV response of the cylindrical structures. In this work, we present how the aspect ratio of a flexible cylinder can change the vortex structures in its wake. We will discuss different vortex dynamics which can be observed in the wake of the vibrating flexible cylinder, and how they can affect the vibrational response of the cylinder. Moreover, we will study the transition of these structures versus the aspect ratio of the flexible cylinder. We will discuss how these transitions affect the in-line and transverse forces on the structure. In the end, we will provide general guidelines on the minimum acceptable aspect ratio for the offshore riser studies which may have grave implications for future numerical and experimental works.

Keywords: aspect ratio, flexible cylinder, vortex-shedding, VIV

Procedia PDF Downloads 487
2979 Theoretical Studies on the Formation Constant, Geometry, Vibrational Frequencies and Electronic Properties Dinuclear Molybdenum Complexes

Authors: Mahboobeh Mohadeszadeh, Behzad Padidaran Moghaddam

Abstract:

In order to measuring dinuclear molybdenum complexes formation constant First,the reactants and the products were optimized separately and then, their frequencies were measured. In next level , with using Hartree-fock (HF) and density functional theory (DFT) methods ,Theoretical studies on the geometrical parameters, electronic properties and vibrational frequencies of dinuclear molybdenum complexes [C40H44Mo2N2O20] were investigated . These calculations were performed with the B3LYP, BPV86, B3PW91 and HF theoretical method using the LANL2DZ (for Mo’s) + 6-311G (for others) basis sets. To estimate the error rate between theoretical data and experimental data, RSquare , SError and RMS values that according with the theoretical and experimental parameters found out DFT methods has more integration with experimental data compare to HF methods. In addition, through electron specification of compounds, the percentage of atomic orbital’s attendance in making molecular orbital’s, atoms electrical charge, the sustainable energy resulting and also HOMO and LUMO orbital’s energy achieved.

Keywords: geometrical parameters, hydrogen bonding, electronic properties, vibrational frequencies

Procedia PDF Downloads 274
2978 Ergonomical Study of Hand-Arm Vibrational Exposure in a Gear Manufacturing Plant in India

Authors: Santosh Kumar, M. Muralidhar

Abstract:

The term ‘ergonomics’ is derived from two Greek words: ‘ergon’, meaning work and ‘nomoi’, meaning natural laws. Ergonomics is the study of how working conditions, machines and equipment can be arranged in order that people can work with them more efficiently. In this research communication an attempt has been made to study the effect of hand-arm vibrational exposure on the workers of a gear manufacturing plant by comparison of potential Carpal Tunnel Syndrome (CTS) symptoms and effect of different exposure levels of vibration on occurrence of CTS in actual industrial environment. Chi square test and correlation analysis have been considered for statistical analysis. From Chi square test, it has been found that the potential CTS symptoms occurrence is significantly dependent on the level of vibrational exposure. Data analysis indicates that 40.51% workers having potential CTS symptoms are exposed to vibration. Correlation analysis reveals that potential CTS symptoms are significantly correlated with exposure to level of vibration from handheld tools and to repetitive wrist movements.

Keywords: CTS symptoms, hand-arm vibration, ergonomics, physical tests

Procedia PDF Downloads 371
2977 Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)

Authors: H. Krarcha

Abstract:

The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions.

Keywords: Hafnium, elastic propreties, first principles calculation, perovskite

Procedia PDF Downloads 381
2976 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 153
2975 Application of the Extended Kantorovich Method to Size-Dependent Vibrational Analysis of Fully Clamped Rectangular Micro-Plates

Authors: Amir R. Askari, Masoud Tahani

Abstract:

The objective of the present paper is to investigate the effect of size on the vibrational behavior of fully clamped rectangular micro-plates based on the modified couple stress theory (MCST). To this end, a size-dependent Kirchhoff plate model is considered and the equation of motion which accounts for the effect of residual and couple stress components is derived using the Hamilton's principle. The eigenvalue problem associated with the free vibrations of fully clamped micro-plates is extracted and solved analytically using the extended Kantorovich method (EKM). The present findings are compared and validated by available results in the literature and an excellent agreement between them is observed. A parametric study is also conducted to show the significant effects of couple stress components on natural frequencies of fully clamped micro-plates. It is found that the ratio of MCST natural frequencies to those obtained by the classical theory (CT) only depends on the Poisson's ratio of the plate and is totally independent of plate's aspect ratio for cases with no residual stresses.

Keywords: vibrational analysis, modified couple stress theory, fully clamped rectangular micro-plates, extended Kantorovich method.

Procedia PDF Downloads 387
2974 First-Principles Density Functional Study of Nitrogen-Doped P-Type ZnO

Authors: Abdusalam Gsiea, Ramadan Al-habashi, Mohamed Atumi, Khaled Atmimi

Abstract:

We present a theoretical investigation on the structural, electronic properties and vibrational mode of nitrogen impurities in ZnO. The atomic structures, formation and transition energies and vibrational modes of (NO3)i interstitial or NO4 substituting on an oxygen site ZnO were computed using ab initio total energy methods. Based on Local density functional theory, our calculations are in agreement with one interpretation of bound-excition photoluminescence for N-doped ZnO. First-principles calculations show that (NO3)i defects interstitial or NO4 substituting on an Oxygen site in ZnO are important suitable impurity for p-type doping in ZnO. However, many experimental efforts have not resulted in reproducible p-type material with N2 and N2O doping. by means of first-principle pseudo-potential calculation we find that the use of NO or NO2 with O gas might help the experimental research to resolve the challenge of achieving p-type ZnO.

Keywords: DFF, nitrogen, p-type, ZnO

Procedia PDF Downloads 462
2973 Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn

Authors: Hamza Ouachtouk, Amine Harbi, Said Azerblou, Youssef Naimi, El Mostafa Tace

Abstract:

This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions.

Keywords: double perovskites, structural analysis, vibrational spectroscopy, magnetic properties, electronic properties, high-temperature solid-state chemistry, La₂MMnO₆, monoclinic structure, x-ray diffraction

Procedia PDF Downloads 52
2972 Effects of Surface Roughness on a Unimorph Piezoelectric Micro-Electro-Mechanical Systems Vibrational Energy Harvester Using Finite Element Method Modeling

Authors: Jean Marriz M. Manzano, Marc D. Rosales, Magdaleno R. Vasquez Jr., Maria Theresa G. De Leon

Abstract:

This paper discusses the effects of surface roughness on a cantilever beam vibrational energy harvester. A silicon sample was fabricated using MEMS fabrication processes. When etching silicon using deep reactive ion etching (DRIE) at large etch depths, rougher surfaces are observed as a result of increased response in process pressure, amount of coil power and increased helium backside cooling readings. To account for the effects of surface roughness on the characteristics of the cantilever beam, finite element method (FEM) modeling was performed using actual roughness data from fabricated samples. It was found that when etching about 550um of silicon, root mean square roughness parameter, Sq, varies by 1 to 3 um (at 100um thick) across a 6-inch wafer. Given this Sq variation, FEM simulations predict an 8 to148 Hz shift in the resonant frequency while having no significant effect on the output power. The significant shift in the resonant frequency implies that careful consideration of surface roughness from fabrication processes must be done when designing energy harvesters.

Keywords: deep reactive ion etching, finite element method, microelectromechanical systems, multiphysics analysis, surface roughness, vibrational energy harvester

Procedia PDF Downloads 120
2971 Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review

Authors: Fazl E. Ahad, Shi Dongyan, Anees Ur Rehman

Abstract:

Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly.

Keywords: mindlin plates, vibrations, arbitrary boundary conditions, mode shapes, natural frequency

Procedia PDF Downloads 322
2970 The Inversion of Helical Twist Sense in Liquid Crystal by Spectroscopy Methods

Authors: Anna Drzewicz, Marzena Tykarska

Abstract:

The chiral liquid crystal phases form the helicoidal structure, which is characterized by the helical pitch and the helical twist sense. In anticlinic smectic phase with antiferroelectric properties three types of helix temperature dependence have been obtained: increased helical pitch with temperature and right-handed helix, decreased helical pitch with temperature and left-handed helix and the inversion of both. The change of helical twist sense may be observed during the transition from one liquid crystal phase to another or within one phase for the same substance. According to Gray and McDonnell theory, the helical handedness depends on the absolute configuration of the assymetric carbon atom and its position related to the rigid core of the molecule. However, this theory does not explain the inversion of helical twist sense phenomenon. It is supposed, that it may be caused by the presence of different conformers with opposite handendess, which concentration may change with temperature. In this work, the inversion of helical twist sense in the chiral liquid crystals differing in the length of alkyl chain, in the substitution the benzene ring by fluorine atoms and in the type of helix handedness was tested by vibrational spectroscopy (infrared and raman spectroscopy) and by nuclear magnetic resonance spectroscopy. The results obtained from the vibrational spectroscopy confirm the presence of different conformers. Moreover, the analysis of nuclear magnetic resonance spectra is very useful to check, on which structural fragments the change of conformations are important for the change of helical twist sense.

Keywords: helical twist sense, liquid crystals, nuclear magnetic resonance spectroscopy, vibrational spectroscopy

Procedia PDF Downloads 280
2969 Study of the Ambiguity of Effective Hamiltonian for the Fundamental Degenerate States V3 of the Molecule 12CD4

Authors: Ouardi Okkacha, Kaarour Abedlkrim, Meskine Mohamed

Abstract:

The effective Hamiltonians are widely used in molecular spectroscopy for the interpretation of the vibration-rotation spectra. Their construction is an ambiguous procedure due to the existence of unitary transformations that change the effective Hamiltonian but do not change its eigenvalues. As a consequence of this ambiguity, it may happen that some parameters of effective Hamiltonians cannot be recovered from experimental data in a unique way. The type of admissible transformations which keeps the operator form of the effective Hamiltonian unaltered and the number of empirically determinable parameters strongly depend on the symmetry type of a molecule (asymmetric top, spherical top, and so on) and on the degeneracy of the vibrational state. In this work, we report the study of the ambiguity of effective Hamiltonian for the fundamental degenerate states v3 of the Molecule 12CD4.

Keywords: 12CD4, high-resolution infrared spectra, tetrahedral tensorial formalism, vibrational states, rovibrational line position analysis, XTDS, SPVIEW

Procedia PDF Downloads 413
2968 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One

Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva

Abstract:

Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.

Keywords: DFT, MEP, NLO, vibrational spectra

Procedia PDF Downloads 221
2967 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

Keywords: hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow

Procedia PDF Downloads 465
2966 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 75
2965 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 297
2964 Fractional Calculus into Structural Dynamics

Authors: Jorge Lopez

Abstract:

In this work, we introduce fractional calculus in order to study the dynamics of a damped multistory building with some symmetry. Initially we make a review of the dynamics of a free and damped multistory building. Then we introduce those concepts of fractional calculus that will be involved in our study. It has been noticed that fractional calculus provides models with less parameters than those based on classical calculus. In particular, a damped classical oscilator is more naturally described by using fractional derivatives. Accordingly, we model our multistory building as a set of coupled fractional oscillators and compare its dynamics with the results coming from traditional methods.

Keywords: coupled oscillators, fractional calculus, fractional oscillator, structural dynamics

Procedia PDF Downloads 242
2963 Quadrotor in Horizontal Motion Control and Maneuverability

Authors: Ali Oveysi Sarabi

Abstract:

In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.

Keywords: helicopter balance, flight dynamics, autonomous landing, control robotics

Procedia PDF Downloads 509
2962 Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers

Authors: Arslan Usman, Abdul Sattar, Hamid Latif, Afshan Ashfaq, Muhammad Rafique, Martin Koch

Abstract:

Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV.

Keywords: 2D materials, photoluminescence, AFM, excitons

Procedia PDF Downloads 143
2961 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 293