Search results for: urban water resilience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12548

Search results for: urban water resilience

12548 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 143
12547 Urban Resilience and Planning in the Perspective of Community

Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun

Abstract:

Urban community is constitute the entire city and its management ‘cell’, let ‘cells’ with growth and self-regeneration capacity and persistence, to allow the city with infinite vigor and vitality of the source; with toughness community mankind's adaptation to the basic unit of social risk, toughness of the city from the community to create a point of building is urban toughness of top-down construction mode of supplement, is of positive significance on the toughness of the urban construction. Based on the basic concept of resilience, this paper reviews the research on the four main areas of the study of urban resilience (i.e., the engineering toughness, ecological resilience, economic resilience, and social resilience, etc.). Studies and comments and summarizes the basic characteristic and main content of the four kind of toughness. Based on, from the city - community level and community level for building community resilience, including the level of urban community and create a Unicom, inclusiveness and openness of the community; community-level lifted from the four angles of the engineering community toughness, ecological toughness, resilience, social resilience, mainly including enhanced the toughness of the infrastructure, green infrastructure of toughness, resilience, social network and social relations, building with a sense of belonging, inclusive, multicultural community. Finally, summarize and prospect the resilience of the community.

Keywords: resilience, community resilience, urban resilience, construction strategies

Procedia PDF Downloads 251
12546 Smart Water Cities for a Sustainable Future: Defining, Necessity, and Policy Pathways for Canada's Urban Water Resilience

Authors: Sima Saadi, Carolyn Johns

Abstract:

The concept of a "Smart Water City" is emerging as a framework to address critical urban water challenges, integrating technology, data, and sustainable management practices to enhance water quality, conservation, and accessibility. This paper explores the definition of a Smart Water City, examines the pressing need for such cities in Canada, and proposes policy pathways for their development. Smart Water Cities utilize advanced monitoring systems, data analytics, and integrated water resources management to optimize water usage, anticipate and mitigate environmental impacts, and engage citizens in sustainable practices. Global examples from regions such as Europe, Asia, and Australia illustrate how Smart Water City models can transform urban water systems by enhancing resilience, improving resource efficiency, and driving economic development through job creation in environmental technology sectors. For Canada, adopting Smart Water City principles could address pressing challenges, including climate-induced water stress, aging infrastructure, and the need for equitable water access across diverse urban and rural communities. Building on Canada's existing water policies and technological expertise, it propose strategic investments in digital water infrastructure, data-driven governance, and community partnerships. Through case studies, this paper offers insights into how Canadian cities could benefit from cross-sector collaboration, policy development, and funding for smart water technology. By aligning national policy with smart urban water solutions, Canada has the potential to lead globally in sustainable water management, ensuring long-term water security and environmental stewardship for its cities and communities.

Keywords: smart water city, urban water resilience, water management technology, sustainable water infrastructure, canada water policy, smart city initiatives

Procedia PDF Downloads 9
12545 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida

Authors: N. Mehrotra, V. Ahuja, N. Sridharan

Abstract:

Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.

Keywords: disaster, resilience, system, urban

Procedia PDF Downloads 459
12544 Rethink Urban Resilience: An Introductory Study Towards Resilient Spatial Structure of Refugees Neighborhoods

Authors: Salwa Mohammad Alawneh

Abstract:

The ongoing humanitarian crises spur rapid and unpredicted refugee influxes resulting in demographic changes in cities. Regarding different urban systems are vulnerable in refugee neighborhoods. With the consequent social, economic, and spatial challenges, cities must respond with a more durable and sustainable approach based on urban resilience. The paper systematically approaches urban resilience to contribute to refugee spaces by reflecting on the overall urban systems of their neighborhoods. The research will review the urban resilience literature to develop an evaluation framework. The developed framework applies urban resilience more holistically in refugee neighborhoods and expands to the urban systems of social, economic, and spatial. However, the main highlight of this paper is the resilient spatial structure in refugee neighborhoods to face the internal and complex stress of refugee waves and their demographic changes. Finding a set of resilient spatial measurements and focusing on urban forms at a neighborhood scale provide vulnerability reduction and enhance adaptation capacity. As a model example, the paper applies these measurements and facilitates geospatial technologies to one of the refugee neighborhoods in Amman, Jordan, namely Al-Jubilee. The application in Al-Jubilee helps to demonstrate a road map towards a developmental pattern in design and planning by different decision-makers of inter-governmental and humanitarian organizations. In this regard, urban resilience improves the humanitarian assistantship of refugee settings beyond providing the essential needs. In conclusion, urban resilience responds to the different challenges of refugee neighborhoods by supporting urban stability, improving livability, and maintaining both urban functions and security.

Keywords: urban resilience of refugee, resilient urban form, refugee neighborhoods, humanitarian assistantship, refugee in Jordan

Procedia PDF Downloads 160
12543 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities

Authors: Abdelghani Qadem

Abstract:

Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.

Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development

Procedia PDF Downloads 57
12542 Resilience Assessment of Mountain Cities from the Perspective of Disaster Prevention: Taking Chongqing as an Example

Authors: Yun Ma, Jiajun Lu

Abstract:

President Xi Jinping has clearly stated the need to more effectively advance the process of urbanization centered on people, striving to shape cities into spaces that are healthier, safer, and more livable. However, during the development and construction of mountainous cities, numerous uncertain disruptive factors have emerged, one after another, posing severe challenges to the city's overall development. Therefore, building resilient cities and creating high-quality urban ecosystems and safety systems have become the core and crux of achieving sustainable urban development. This paper takes the central urban area of Chongqing as the research object and establishes an urban resilience assessment indicator system from four dimensions: society, economy, ecology, and infrastructure. It employs the entropy weight method and TOPSIS model to assess the urban resilience level of the central urban area of Chongqing from 2019 to 2022. The results indicate that i. the resilience level of the central urban area of Chongqing is unevenly distributed, showing a spatial pattern of "high in the middle and low around"; it also demonstrates differentiation across different dimensions; ii. due to the impact of the COVID-19 pandemic, the overall resilience level of the central urban area of Chongqing has declined significantly, with low recovery capacity and slow improvement in urban resilience. Finally, based on the four selected dimensions, this paper proposes optimization strategies for urban resilience in mountainous cities, providing a basis for Chongqing to build a safe and livable new city.

Keywords: mountainous urban areas, central urban area of chongqing, entropy weight method, TOPSIS model, ArcGIS

Procedia PDF Downloads 8
12541 Research Methods and Design Strategies to Improve Resilience in Coastal and Estuary Cities

Authors: Irene Perez Lopez

Abstract:

Delta and estuary cities are spaces constantly evolving, incessantly altered by the ever-changing actions of water transformation. Strategies that incorporate comprehensive and integrated approaches to planning and design with water will play a powerful role in defining new types of flood defense. These strategies will encourage more resilient and active urban environments, allowing for new spatial and functional programs. This abstract presents the undergoing research in Newcastle, the first urbanized delta in New South Wales (Australia), and the region's second-biggest catchment and estuary. The research methodology is organized in three phases: 1) a projective cartography that analyses maps and data across the region's recorded history, identifying past and present constraints, and predicting future conditions. The cartography aids to identify worst-case scenarios, revealing the implications of land reclamation that have not considered the confronting evolution of climate change and its conflicts with inhabitation; 2) the cartographic studies identify the areas under threat and form the basis for further interdisciplinary research, complimented by community consultation, to reduce flood risk and increase urban resilience and livability; 3) a speculative or prospective phase of design with water to generate evidence-based guidelines that strengthen urban resilience of shorelines and flood prone areas.

Keywords: coastal defense, design, urban resilience, mapping

Procedia PDF Downloads 132
12540 Climate Change and Urban Flooding: The Need to Rethinking Urban Flood Management through Resilience

Authors: Suresh Hettiarachchi, Conrad Wasko, Ashish Sharma

Abstract:

The ever changing and expanding urban landscape increases the stress on urban systems to support and maintain safe and functional living spaces. Flooding presents one of the more serious threats to this safety, putting a larger number of people in harm’s way in congested urban settings. Climate change is adding to this stress by creating a dichotomy in the urban flood response. On the one hand, climate change is causing storms to intensify, resulting in more destructive, rarer floods, while on the other hand, longer dry periods are decreasing the severity of more frequent, less intense floods. This variability is creating a need to be more agile and innovative in how we design for and manage urban flooding. Here, we argue that to cope with this challenge climate change brings, we need to move towards urban flood management through resilience rather than flood prevention. We also argue that dealing with the larger variation in flood response to climate change means that we need to look at flooding from all aspects rather than the single-dimensional focus of flood depths and extents. In essence, we need to rethink how we manage flooding in the urban space. This change in our thought process and approach to flood management requires a practical way to assess and quantify resilience that is built into the urban landscape so that informed decision-making can support the required changes in planning and infrastructure design. Towards that end, we propose a Simple Urban Flood Resilience Index (SUFRI) based on a robust definition of resilience as a tool to assess flood resilience. The application of a simple resilience index such as the SUFRI can provide a practical tool that considers urban flood management in a multi-dimensional way and can present solutions that were not previously considered. When such an index is grounded on a clear and relevant definition of resilience, it can be a reliable and defensible way to assess and assist the process of adapting to the increasing challenges in urban flood management with climate change.

Keywords: urban flood resilience, climate change, flood management, flood modelling

Procedia PDF Downloads 49
12539 The Effects of Weather Events and Land Use Change on Urban Ecosystems: From Risk to Resilience

Authors: Szu-Hua Wang

Abstract:

Urban ecosystems, as complex coupled human-environment systems, contain abundant natural resources for breeding natural assets and, at the same time, attract urban assets and consume natural resources, triggered by urban development. Land use change illustrates the interaction between human activities and environments factually. However, IPCC (2014) announces that land use change and urbanization due to human activities are the major cause of climate change, leading to serious impacts on urban ecosystem resilience and risk. For this reason, risk assessment and resilience analysis are the keys for responding to climate change on urban ecosystems. Urban spatial planning can guide urban development by land use planning, transportation planning, and environmental planning and affect land use allocation and human activities by building major constructions and protecting important national land resources simultaneously. Urban spatial planning can aggravate climate change and, on the other hand, mitigate and adapt climate change. Research on effects of spatial planning on land use change and climate change is one of intense issues currently. Therefore, this research focuses on developing frameworks for risk assessment and resilience analysis from the aspect of ecosystem based on typhoon precipitation in Taipei area. The integrated method of risk assessment and resilience analysis will be also addressed for applying spatial planning practice and sustainable development.

Keywords: ecosystem, land use change, risk analysis, resilience

Procedia PDF Downloads 417
12538 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 292
12537 Understanding and Explaining Urban Resilience and Vulnerability: A Framework for Analyzing the Complex Adaptive Nature of Cities

Authors: Richard Wolfel, Amy Richmond

Abstract:

Urban resilience and vulnerability are critical concepts in the modern city due to the increased sociocultural, political, economic, demographic, and environmental stressors that influence current urban dynamics. Urban scholars need help explaining urban resilience and vulnerability. First, cities are dominated by people, which is challenging to model, both from an explanatory and a predictive perspective. Second, urban regions are highly recursive in nature, meaning they not only influence human action, but the structures of cities are constantly changing due to human actions. As a result, explanatory frameworks must continuously evolve as humans influence and are influenced by the urban environment in which they operate. Finally, modern cities have populations, sociocultural characteristics, economic flows, and environmental impacts on order of magnitude well beyond the cities of the past. As a result, the frameworks that seek to explain the various functions of a city that influence urban resilience and vulnerability must address the complex adaptive nature of cities and the interaction of many distinct factors that influence resilience and vulnerability in the city. This project develops a taxonomy and framework for organizing and explaining urban vulnerability. The framework is built on a well-established political development model that includes six critical classes of urban dynamics: political presence, political legitimacy, political participation, identity, production, and allocation. In addition, the framework explores how environmental security and technology influence and are influenced by the six elements of political development. The framework aims to identify key tipping points in society that act as influential agents of urban vulnerability in a region. This will help analysts and scholars predict and explain the influence of both physical and human geographical stressors in a dense urban area.

Keywords: urban resilience, vulnerability, sociocultural stressors, political stressors

Procedia PDF Downloads 116
12536 Urban Transport System Resilience Guidelines

Authors: Evangelia Gaitanidou, Evangelos Bekiaris

Abstract:

Considering that resilience implies the ability of a system to adapt continuously in order to respond to its operational goals, a system is considered as more or less resilient depending on the level and time of recovering from disruptive events and/or shocks to its initial state. Regarding transport systems, enhancing resilience is considered imperative for two main reasons: Such systems provide critical support to every socio-economic activity, while being one of the most important economic sectors and, secondly, the paths that convey people, goods and information, are the same through which risks are propagated. RESOLUTE (RESilience management guidelines and Operationalization appLied to Urban Transport Environment) Horizon 2020 research project is answering those needs, by proposing and testing a set of guidelines for resilience management of the urban transport system. The methods and steps towards this goal, through a step-wise methodology, taking into account established models like FRAM (Functional Resonance Analysis Model), and upon gathering existing practices are described in this paper, together with an overview of the produced guidelines. The overall aim is to create a framework which public transport authorities could consult and apply, for rendering their infrastructure resilient against natural disaster and other threats.

Keywords: guidelines, infrastructure, resilience, transport

Procedia PDF Downloads 249
12535 Developing Cause-effect Model of Urban Resilience versus Flood in Karaj City using TOPSIS and Shannon Entropy Techniques

Authors: Mohammad Saber Eslamlou, Manouchehr Tabibian, Mahta Mirmoghtadaei

Abstract:

The history of urban development and the increasing complexities of urban life have long been intertwined with different natural and man-made disasters. Sometimes, these unpleasant events have destroyed the cities forever. The growth of the urban population and the increase of social and economic resources in the cities increased the importance of developing a holistic approach to dealing with unknown urban disasters. As a result, the interest in resilience has increased in most of the scientific fields, and the urban planning literature has been enriched with the studies of the social, economic, infrastructural, and physical abilities of the cities. In this regard, different conceptual frameworks and patterns have been developed focusing on dimensions of resilience and different kinds of disasters. As the most frequent and likely natural disaster in Iran is flooding, the present study aims to develop a cause-effect model of urban resilience against flood in Karaj City. In this theoretical study, desk research and documentary studies were used to find the elements and dimensions of urban resilience. In this regard, 6 dimensions and 32 elements were found for urban resilience and a questionnaire was made by considering the requirements of TOPSIS techniques (pairwise comparison). The sample of the research consisted of 10 participants who were faculty members, academicians, board members of research centers, managers of the Ministry of Road and Urban Development, board members of New Towns Development Company, experts, and practitioners of consulting companies who had scientific and research backgrounds. The gathered data in this survey were analyzed using TOPSIS and Shannon Entropy techniques. The results show that Infrastructure/Physical, Social, Organizational/ Institutional, Structural/Physical, Economic, and Environmental dimensions are the most effective factors in urban resilience against floods in Karaj, respectively. Finally, a comprehensive model and a systematic framework of factors that affect the urban resilience of Karaj against floods was developed. This cause – effect model shows how different factors are related and influence each other, based on their connected structure and preferences.

Keywords: urban resilience, TOPSIS, Shannon entropy, cause-effect model of resilience, flood

Procedia PDF Downloads 58
12534 A Study of Spatial Resilience Strategies for Schools Based on Sustainable Development

Authors: Xiaohan Gao, Kai Liu

Abstract:

As essential components of urban areas, primary and secondary schools are extensively distributed throughout various regions of the city. During times of urban disturbances, these schools become direct carriers of complex disruptions. Therefore, fostering resilient schools becomes a pivotal driving force to promote high-quality urban development and a cornerstone of sustainable school growth. This paper adopts the theory of spatial resilience and focuses on primary and secondary schools in Chinese cities as the research subject. The study first explores the potential disturbance risks faced by schools and delves into the origin and concept of spatial resilience in the educational context. Subsequently, the paper conducts a meta-analysis to characterize the spatial resilience of primary and secondary schools and devises a spatial resilience planning mechanism. Drawing insights from exemplary cases both domestically and internationally, the research formulates spatial and planning resilience strategies for primary and secondary schools to cope with perturbations. These strategies encompass creating an overall layout that integrates harmoniously with nature, promoting organic growth in the planning structure, fostering ecological balance in the landscape system, and enabling dynamic adaptation in architectural spaces. By cultivating the capacity for "resistance-adaptation-transformation," these approaches support sustainable development within the school space. The ultimate goal of this project is to establish a cohesive and harmonious layout that advances the sustainable development of primary and secondary schools while contributing to the overall resilience of urban areas.

Keywords: complex disruption, primary and secondary schools, spatial resilience, sustainable development

Procedia PDF Downloads 78
12533 The Resistance of Fish Outside of Water Medium

Authors: Febri Ramadhan

Abstract:

Water medium is a vital necessity for the survival of fish. Fish can survive inside/outside of water medium within a certain time. By knowing the level of survival fish at outside of water medium, a person can transport the fish to a place with more efficiently. Transport of live fish from one place to another can be done with wet and dry media system. In this experiment the treatment-given the observed differences in fish species. This experiment aimed to test the degree of resilience of fish out of water media. Based on the ANOVA table is obtained, it can be concluded that the type of fish affects the level of resilience of fish outside the water (Fhit> Ftab).

Keywords: fish, transport, retention rate, fish resiliance

Procedia PDF Downloads 337
12532 Assessment and Evaluation Resilience of Urban Neighborhoods in Coping with Natural Disasters in in the Metropolis of Tabriz (Case Study: Region 6 of Tabriz)

Authors: Ali panahi-Kosar Khosravi

Abstract:

Earthquake resilience is one of the most important theoretical and practical concepts in crisis management. Over the past few decades, the rapid growth of urban areas and developing lower urban areas (especially in developing countries) have made them more vulnerable to human and natural crises. Therefore, the resilience of urban communities, especially low-income and unhealthy neighborhoods, is of particular importance. The present study seeks to assess and evaluate the resilience of neighborhoods in the center of district 6 of Tabriz in terms of awareness, knowledge and personal skills, social and psychological capital, managerial-institutional, and the ability to return to appropriate and sustainable conditions. The research method in this research is descriptive-analytical. The authors used library and survey methods to collect information and a questionnaire to assess resilience. The statistical population of this study is the total households living in the four neighborhoods of Shanb Ghazan, Khatib, Gharamalek, and Abuzar alley. Three hundred eighty-four families from four neighborhoods were selected based on the Cochran formula using a simple random sampling method. A one-sample t-test, simple linear regression, and structural equations were used to test the research hypotheses. Findings showed that only two social and psychological awareness and capital indicators in district 6 of Tabriz had a favorable and approved status. Therefore, considering the multidimensional concept of resilience, district 6 of Tabriz is in an unfavorable resilience situation. Also, the findings based on the analysis of variance indicated no significant difference between the neighborhoods of district 6 in terms of resilience, and most neighborhoods are in an unfavorable situation.

Keywords: resilience, statistical analysis, earthquake, district 6 of tabriz

Procedia PDF Downloads 78
12531 Sustainable Urban Resilience and Climate-Proof Urban Planning

Authors: Carmela Mariano

Abstract:

The literature, the scientific and disciplinary debate related to the impacts of climate change on the territory has highlighted, in recent years, the need for climate-proof and resilient tools of urban planning that adopt an integrated and inter-scalar approach for the construction of urban regeneration strategies by the objectives of the European Strategy on adaptation to climate change, the 2030 Agenda for Sustainable Development and the Climate Conference. This article addresses the operational implications of urban climate resilience in urban planning tools as a priority objective of policymakers (government bodies, institutions, etc.) to respond to the risks of climate change-related impacts on the environment. Within the general framework of the research activities carried out by the author, this article provides a critical synthesis of the analysis and evaluation of some case studies from the Italian national context, which enabled, through an inductive method, the assessment of the process of implementing the adaptation to climate change within the regional urban planning frameworks (regional urban laws), specific regional adaptation strategies or local adaptation plans and within the territorial and urban planning tools of a metropolitan or local scale. This study aims to identify theoretical–methodological, and operational references for the innovation and integration of planning tools concerning climate change that allow local planners to test these references in specific territorial contexts to practical adaptation strategies for local action.

Keywords: urban resilience, urban regeneration, climate-proof-planning, urban planning

Procedia PDF Downloads 19
12530 Evaluation of Ecological Resilience in Mountain-plain Transition Zones: A Case Study of Dujiangyan City, Chengdu

Authors: Zhu Zhizheng, Huang Yong, Li Tong

Abstract:

In the context of land and space development and resource environmental protection. Due to its special geographical location, mountain-plain transition zones are limited by many factors such as topography, mountain forest protection, etc., and their ecology is also more sensitive, with the characteristics of disaster susceptibility and resource gradient. Taking Dujiangyan City, Chengdu as an example, this paper establishes resilience evaluation indicators on the basis of ecological suitability evaluation through the analysis of current situation data and relevant policies: water conservation evaluation, soil and water conservation evaluation, biodiversity evaluation, soil erosion sensitivity evaluation, etc. Based on GIS spatial analysis, the ecological suitability and resilience evaluation results of Dujiangyan city were obtained by disjunction operation. The ecological resilience level of Dujiangyan city was divided into three categories: high, medium and low, with an area ratio of 50.81%, 16.4% and 32.79%, respectively. This paper can provide ideas for solving the contradiction between man and land in the mountain-plain transition zones, and also provide a certain basis for the construction of regional ecological protection and the delineation of three zones and three lines.

Keywords: urban and rural planning, ecological resilience, dujiangyan city, mountain-plain transition zones

Procedia PDF Downloads 110
12529 Cities Under Pressure: Unraveling Urban Resilience Challenges

Authors: Sherine S. Aly, Fahd A. Hemeida, Mohamed A. Elshamy

Abstract:

In the face of rapid urbanization and the myriad challenges posed by climate change, population growth, and socio-economic disparities, fostering urban resilience has become paramount. This abstract offers a comprehensive overview of the study on "Urban Resilience Challenges," exploring the background, methodologies, major findings, and concluding insights. The paper unveils a spectrum of challenges encompassing environmental stressors and deep-seated socio-economic issues, such as unequal access to resources and opportunities. Emphasizing their interconnected nature, the study underscores the imperative for holistic and integrated approaches to urban resilience, recognizing the intricate web of factors shaping the urban landscape. Urbanization has witnessed an unprecedented surge, transforming cities into dynamic and complex entities. With this growth, however, comes an array of challenges that threaten the sustainability and resilience of urban environments. This study seeks to unravel the multifaceted urban resilience challenges, exploring their origins and implications for contemporary cities. Cities serve as hubs of economic, social, and cultural activities, attracting diverse populations seeking opportunities and a higher quality of life. However, the urban fabric is increasingly strained by climate-related events, infrastructure vulnerabilities, and social inequalities. Understanding the nuances of these challenges is crucial for developing strategies that enhance urban resilience and ensure the longevity of cities as vibrant and adaptive entities. This paper endeavors to discern strategic guidelines for enhancing urban resilience amidst the dynamic challenges posed by rapid urbanization. The study aims to distill actionable insights that can inform strategic approaches. Guiding the formulation of effective strategies to fortify cities against multifaceted pressures. The study employs a multifaceted approach to dissect urban resilience challenges. A qualitative method will be employed, including comprehensive literature reviews and data analysis of urban vulnerabilities that provided valuable insights into the lived experiences of resilience challenges in diverse urban settings. In conclusion, this study underscores the urgency of addressing urban resilience challenges to ensure the sustained vitality of cities worldwide. The interconnected nature of these challenges necessitates a paradigm shift in urban planning and governance. By adopting holistic strategies that integrate environmental, social, and economic considerations, cities can navigate the complexities of the 21st century. The findings provide a roadmap for policymakers, planners, and communities to collaboratively forge resilient urban futures that withstand the challenges of an ever-evolving urban landscape.

Keywords: resilient principles, risk management, sustainable cities, urban resilience

Procedia PDF Downloads 54
12528 Urban Development Criteria with a Focus on Resilience to Pandemics: A Case Study of Corona Virus (Covid-19)

Authors: Elham Zabetian Targhi, Niusha Fardnava, Saba Saghafi

Abstract:

Urban resilience to Corona Virus has become a major concern for cities these days. Our country also has not been safe from the destructive effects of this virus in social, economic, physical, governance, and management dimensions; and according to official statistics, hundreds of thousands of people in Iran have been infected with this virus and tens of thousands have died so far. Therefore, to measure urban resilience to this pandemic, some criteria and sub-criteria were developed based on the authors’ documentary and field studies, and their significance or weights were determined using analytical-comparative research method using a questionnaire of paired or L-Saati comparisons from the viewpoint of experts in urban sciences and urban development using AHP hierarchical analysis in EXPERT CHOICE software. Then, designing a questionnaire with a five-point Likert scale, the satisfaction of Tehran residents with the extracted criteria and sub-criteria was measured and the correlation between the important criteria in each dimension was assessed using correlation tests in SPSS16 software. According to the obtained results of AHP analysis and the scores of each sub-criterion, the weight of all criteria was normal. In the next stage, according to the pairwise correlation tests between the important criteria in each dimension from the viewpoint of urban science experts and Tehran residents, it was concluded that the reliability of the correlation between the criteria is 99%. In all the cases, the P-value or the same significance level was less than 0.05, which indicated the significance of the pairwise relations between the variables.

Keywords: Urban Resilience, Pandemics, Corona Virus (Covid-19), Criteria.

Procedia PDF Downloads 82
12527 Spatial Resilience of the Ageing Population in the Romanian Functional Urban Areas

Authors: Marinela Istrate, Ionel Muntele, Alexandru Bănică

Abstract:

The authors propose the identification, analysis and prognosis of the quantitative and qualitative evolution of the elderly population in the functional urban areas. The present paper takes into account the analysis of some representative indicators (the weight of the elderly population, ageing index, dynamic index of economic ageing of productive population etc.) and the elaboration of an integrated indicator that would help differentiate the population ageing forms in the 48 functional urban areas that were defined based on demographic and social-economic criteria for all large and medium cities in Romania.

Keywords: ageing, demographic transition, functional urban areas, spatial resilience

Procedia PDF Downloads 351
12526 Towards the Need of Resilient Design and Its Assessment in South China

Authors: Alan Lai, Wilson Yik

Abstract:

With rapid urbanization, there has been a dramatic increase in global urban population in Asia and over half of population in Asia will live in urban regions in the near future. Facing with increasing exposure to climate-related stresses and shocks, most of the Asian cities will very likely to experience more frequent heat waves and flooding with rising sea levels, particularly the coastal cities will grapple for intense typhoons and storm surges. These climate changes have severe impacts in urban areas at the costs of infrastructure and population, for example, human health, wellbeing and high risks of dengue fever, malaria and diarrheal disease. With the increasing prominence of adaptation to climate changes, there have been changes in corresponding policies. Smaller cities have greater potentials for integrating the concept of resilience into their infrastructure as well as keeping pace with their rapid growths in population. It is therefore important to explore the potentials of Asian cities adapting to climate change and the opportunities of building climate resilience in urban planning and building design. Furthermore, previous studies have mainly attempted at exploiting the potential of resilience on a macro-level within urban planning rather than that on micro-level within the context of individual building. The resilience of individual building as a research field has not yet been much explored. Nonetheless, recent studies define that the resilience of an individual building is the one which is able to respond to physical damage and recover from such damage in a quickly and cost-effectively manner, while maintain its primary functions. There is also a need to develop an assessment tool to evaluate the resilience on building scale which is still largely uninvestigated as it should be regarded as a basic function of a building. Due to the lack of literature reporting metric for assessing building resilience with sustainability, the research will be designed as a case study to provide insight into the issue. The aim of this research project is to encourage and assist in developing neighborhood climate resilience design strategies for Hong Kong so as to bridge the gap between difference scales and that between theory and practice.

Keywords: resilience cities, building resilience, resilient buildings and infrastructure, climate resilience, hot and humid southeast area, high-density cities

Procedia PDF Downloads 163
12525 Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors

Authors: Meiyan Gao, Zongmin Wang, Haibo Yang, Qiuhua Liang

Abstract:

Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment.

Keywords: urban flood resilience, resilience assessment, hydrodynamic model, resilience curve

Procedia PDF Downloads 40
12524 Water Supply and Utility Management to Address Urban Sanitation Issues

Authors: Akshaya P., Priyanjali Prabhkaran

Abstract:

The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.

Keywords: water, benchmarking water supply, water supply networks, water supply management

Procedia PDF Downloads 109
12523 Resilience and Urban Transformation: A Review of Recent Interventions in Europe and Turkey

Authors: Bilge Ozel

Abstract:

Cities are high-complex living organisms and are subjects to continuous transformations produced by the stress that derives from changing conditions. Today the metropolises are seen like “development engines” of the countries and accordingly they become the centre of better living conditions that encourages demographic growth which constitutes the main reason of the changes. Indeed, the potential for economic advancement of the cities directly represents the economic status of their countries. The term of “resilience”, which sees the changes as natural processes and represents the flexibility and adaptability of the systems in the face of changing conditions, becomes a key concept for the development of urban transformation policies. The term of “resilience” derives from the Latin word ‘resilire’, which means ‘bounce’, ‘jump back’, refers to the ability of a system to withstand shocks and still maintain the basic characteristics. A resilient system does not only survive the potential risks and threats but also takes advantage of the positive outcomes of the perturbations and ensures adaptation to the new external conditions. When this understanding is taken into the urban context - or rather “urban resilience” - it delineates the capacity of cities to anticipate upcoming shocks and changes without undergoing major alterations in its functional, physical, socio-economic systems. Undoubtedly, the issue of coordinating the urban systems in a “resilient” form is a multidisciplinary and complex process as the cities are multi-layered and dynamic structures. The concept of “urban transformation” is first launched in Europe just after World War II. It has been applied through different methods such as renovation, revitalization, improvement and gentrification. These methods have been in continuous advancement by acquiring new meanings and trends over years. With the effects of neoliberal policies in the 1980s, the concept of urban transformation has been associated with economic objectives. Subsequently this understanding has been improved over time and had new orientations such as providing more social justice and environmental sustainability. The aim of this research is to identify the most applied urban transformation methods in Turkey and its main reasons of being selected. Moreover, investigating the lacking and limiting points of the urban transformation policies in the context of “urban resilience” in a comparative way with European interventions. The emblematic examples, which symbolize the breaking points of the recent evolution of urban transformation concepts in Europe and Turkey, are chosen and reviewed in a critical way.

Keywords: resilience, urban dynamics, urban resilience, urban transformation

Procedia PDF Downloads 265
12522 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review

Authors: Qiyao Han, Xianhai Meng

Abstract:

Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.

Keywords: fractal, urban infrastructure, sustainability, system-level resilience

Procedia PDF Downloads 274
12521 Urban River As Living Infrastructure: Tidal Flooding And Sea Level Rise In A Working Waterway In Hampton Roads, Virginia

Authors: William Luke Hamel

Abstract:

Existing conceptions of urban flooding caused by tidal fluctuations and sea-level rise have been inadequately conceptualized by metrics of resilience and methods of flow modeling. While a great deal of research has been devoted to the effects of urbanization on pluvial flooding, the kind of tidal flooding experienced by locations like Hampton Roads, Virginia, has not been adequately conceptualized as being a result of human factors such as urbanization and gray infrastructure. Resilience from sea level rise and its associated flooding has been pioneered in the region with the 2015 Norfolk Resilience Plan from 100 Resilient Cities as well as the 2016 Norfolk Vision 2100 plan, which envisions different patterns of land use for the city. Urban resilience still conceptualizes the city as having the ability to maintain an equilibrium in the face of disruptions. This economic and social equilibrium relies on the Elizabeth River, narrowly conceptualized. Intentionally or accidentally, the river was made to be a piece of infrastructure. Its development was meant to serve the docks, shipyards, naval yards, and port infrastructure that gives the region so much of its economic life. Inasmuch as it functions to permit the movement of cargo; the raising and lowering of ships to be repaired, commissioned, or decommissioned; or the provisioning of military vessels, the river as infrastructure is functioning properly. The idea that the infrastructure is malfunctioning when high tides and sea-level rise create flooding is predicated on the idea that the infrastructure is truly a human creation and can be controlled. The natural flooding cycles of an urban river, combined with the action of climate change and sea-level rise, are only abnormal so much as they encroach on the development that first encroached on the river. The urban political ecology of water provides the ability to view the river as an infrastructural extension of urban networks while also calling for its emancipation from stationarity and human control. Understanding the river and city as a hydrosocial territory or as a socio-natural system liberates both actors from the duality of the natural and the social while repositioning river flooding as a normal part of coexistence on a floodplain. This paper argues for the adoption of an urban political ecology lens in the analysis and governance of urban rivers like the Elizabeth River as a departure from the equilibrium-seeking and stability metrics of urban resilience.

Keywords: urban flooding, political ecology, Elizabeth river, Hampton roads

Procedia PDF Downloads 169
12520 Rethinking Everyday Urban Spaces Using Principles of Resilient Urbanism: A Case of Flooding in Thiruvalla

Authors: Prejily Thomas John

Abstract:

Flooding of urban areas often has an adverse impact on the dense population residing in cities. The vulnerable areas are the most affected due to flooding, which even results in loss of life. The increasing trend of urban floods is a universal phenomenon and leads to a vital loss in the physical, economic, social, and environmental dimensions. The shift from floods being natural disasters to man-made disasters due to unplanned urban growth is evident from national and international reports. Thiruvalla, bordered by the Manimala River in the Pathanamthitta district, is an important urban node and a drainage point of various estuaries. The city is often faced with flash floods and overflow from rivers since it is a low-lying land. The need for urban flood resilience for planned urban development is a necessity for livability in consideration of the topography. The paper focuses on developing an urban design framework in everyday urban spaces through the principles of resilient urbanism. The principles guide the creation of flood-resilient spaces and productive urban landscapes for the city to enable better and safer living conditions. A flood-resilient city not only prepares the city for disasters but also improves the ecological and economic conditions.

Keywords: everyday urban spaces, flood resilience, resilient urbanism, productive urban landscapes

Procedia PDF Downloads 81
12519 The City Ecological Corridor Construction Based on the Concept Of "Sponge City"(Case Study: Lishui)

Authors: Xu Mengyuan, Xu Lei

Abstract:

Behind the rapid development of Chinese city, the contradiction of frequent urban waterlogging and the shortage of water resources is deepening. In order to solve this problem, introduce the low impact development "sponge city" construction mode in the process of the construction of new urbanization in China, make our city " resilience to adapt" environmental change and natural disaster. Firstly this paper analyses the basic reason of urban waterlogging, then introduces the basic connotation and realization approach of “sponge city”. Finally, study on the project in Lishui Guazhou, focuses on the analysis of the "urban ecological corridor" construction strategy and the positive impact on city in the construction of “sponge city”. Meanwhile, we put forward the ”local conditions” and ”sustainable” as the construction ideas, make use of ecological construction leading city development, explore the ecological balance through the city to enhance the regional value, and providing reference and reflection for the development and future of the “sponge city” in China.

Keywords: urban water logging, sponge city, urban ecological corridor, sustainable development, China

Procedia PDF Downloads 641