Search results for: ultra-violet radiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1526

Search results for: ultra-violet radiation

1496 Radiation Hardness Materials Article Review

Authors: S. Abou El-Azm, U. Kruchonak, M. Gostkin, A. Guskov, A. Zhemchugov

Abstract:

Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented.

Keywords: semiconductor detectors, radiation hardness, GaAs, Si, CCE, I-V, C-V

Procedia PDF Downloads 79
1495 Effects of UV-B Radiation on the Growth of Ulva Pertusa Kjellman Seedling

Authors: HengJiang Cai, RuiJin Zhang, JinSong Gui

Abstract:

Enhanced UV-B (280-320nm) radiation resulting from ozone depletion was one of the global environmental problems. The effects of enhanced UV-B radiation on marine macro-algae were exposed to be the greatest in shallow intertidal environments because the macro-alga was often at or above the water during low tide. Ulva pertusa Kjellman was belonged to Chlorophyta (Phylum), Ulvales (Order), Ulvaceae (Family) which was widely distributed in the western Pacific coast, and the resources were extremely rich in China. Therefore, the effects of UV-B radiation on the growth of Ulva pertusa seedling were studied in this research. Ulva pertusa seedling appearances were mainly characterized by rod shapes and tadpole shapes. The percentage of rod shapes was 90.68%±2.50%. UV-B radiation could inhibit the growth of Ulva pertusa seedling, and the growth inhibition was more significant with the increased doses of UV-B radiation treatment. The relative inhibition rates of Ulva pertusa seedling length were16.11%, 24.98%and 39.04% respectively on the 30th day at different doses (30.96, 61.92 and 123.84 Jm-2d-1) of UV-B radiation. Ulva pertusa seedling had emerged death under UV-B radiation, and the death rates were increased with the increased doses of UV-B radiation treatment. Physiology and biochemistry of Ulva pertusa seedling could be affected by UV-B radiation treatment. The SOD (superoxide dismutase) activity was increased at low-dose UV-B radiation (30.96 Jm-2d-1), while was decreased at high-dose UV-B radiation (61.92 and 123.84 Jm-2d-1). UV-B radiation could inhibit CAT (catalase) activity all the while. It speculated that the reasons for growth inhibition and death of Ulva pertusa seedling were excess ROS (reactive oxygen species), which produced by UV-B radiation.

Keywords: growth, physiology and biochemistry, Ulva pertusa Kjellman, UV-B radiation

Procedia PDF Downloads 253
1494 Models to Estimate Monthly Mean Daily Global Solar Radiation on a Horizontal Surface in Alexandria

Authors: Ahmed R. Abdelaziz, Zaki M. I. Osha

Abstract:

Solar radiation data are of great significance for solar energy system design. This study aims at developing and calibrating new empirical models for estimating monthly mean daily global solar radiation on a horizontal surface in Alexandria, Egypt. Day length hours, sun height, day number, and declination angle calculated data are used for this purpose. A comparison between measured and calculated values of solar radiation is carried out. It is shown that all the proposed correlations are able to predict the global solar radiation with excellent accuracy in Alexandria.

Keywords: solar energy, global solar radiation, model, regression coefficient

Procedia PDF Downloads 369
1493 Determining the Effectiveness of Radiation Shielding and Safe Time for Radiation Worker by Employing Monitoring of Accumulation Dose in the Operator Room of CT Scan

Authors: Risalatul Latifah, Bunawas Bunawas, Lailatul Muqmiroh, Anggraini D. Sensusiati

Abstract:

Along with the increasing frequency of the use of CT-Scan for radiodiagnostics purposes, it is necessary to study radiation protection. This study examined aspects of radiation protection of workers. This study tried using thermoluminescent dosimeter (TLD) for evaluating radiation shielding and estimating safe time for workers during CT Scan examination. Six TLDs were placed on door, wall, and window inside and outside of the CT Scan room for 1 month. By using TLD monitoring, it could be seen how much radiation was exposed in the operator room. The results showed the effective dose at door, window, and wall was respectively 0.04 mSv, 0.05 mSv, and 0.04 mSv. With these values, it could be evaluated the effectiveness of radiation shielding on doors, glass and walls were respectively 90.6%, 95.5%, and 92.2%. By applying the dose constraint and the estimation of the accumulated dose for one month, radiation workers were still safe to perform the irradiation for 180 patients.

Keywords: CT scan room, TLD, radiation worker, dose constraint

Procedia PDF Downloads 256
1492 Removal of Oxytetracycline Using Sonophotocatalysis: Parametric Study

Authors: Bouafia-Chergui Souâd, Chabani Malika, Bensmaili Aicha

Abstract:

Water treatment and especially, medicament pollutants are nowadays important problems. Degradation of oxytetracycline was carried out using combined process of low-frequency ultrasound (US), ultraviolet irradiation and a catalyst. The effectiveness of the coupled processes has been evaluated by studying the effects of various operating parameters including initial OTC concentration, solution pH and catalyst mass. For the photolysis process, the monochromatic ultraviolet light wavelength utilized was 365 nm. The sonolysis experiments were performed with ultrasound at a frequency of 40 kHz. The heterogeneous photocatalysis was studied in the presence of TiO2. The processes were employed individually, and simultaneously to examine the details of the processes and to investigate the contribution of each process. Low UV intensity (12W), low pH and high mass of TiO2 conditions enhanced the sono-photocatalytic degradation of OTC. The results showed that the individual contribution sonochemical and photochemical reactions are very low, however, their coupling increases the degradation rate of 8 times compared to photolysis and 2 times compared to sonolysis. There is a synergistic effect between the two modes of radiation, UV and U.S. leading to 82.04% degradation yield. An application of these combined processes on the treatment of a real pharmaceutical wastewater was examined.

Keywords: sonolysis, photocatalysis, combined process, antibiotic

Procedia PDF Downloads 249
1491 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 75
1490 Solar Radiation Studies and Performance of Solar Panels for Three Cities of Sindh, Pakistan

Authors: M. A. Ahmed, Sidra A. Shaikh, M. W. Akhtar

Abstract:

Solar radiation on horizontal surface over three southern cities of Sindh, namely Karachi, Hyderabad and Nawabshah has been investigated to asses the feasibility of solar energy application for power generation. In the present work, measured data of bright sunshine hour of the region have been used to estimate the global and diffuse solar radiation. The regression coefficient 'a' and 'b' have been calculated using first order Angstrom type co-relation. The result obtained shows that the contribution of direct solar radiation is low and diffuse radiation is high during the monsoon months July and August for Karachi and Hyderabad. The sky remains clear from September to June, whereas for Nawabshah the global radiation remains high throughout the year. The potential of grid quality solar photovoltaic power in Karachi is estimated for 10 square meter area of solar panel.

Keywords: solar potential over Sindh, global and diffuse solar radiation, radiation over three cities of Sindh, solar panels

Procedia PDF Downloads 414
1489 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics

Authors: Neha Singh

Abstract:

The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.

Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits

Procedia PDF Downloads 221
1488 Na Doped ZnO UV Filters with Reduced Photocatalytic Activity for Sunscreen Application

Authors: Rafid Mueen, Konstantin Konstantinov, Micheal Lerch, Zhenxiang Cheng

Abstract:

In the past two decades, the concern for skin protection from ultraviolet (UV) radiation has attracted considerable attention due to the increased intensity of UV rays that can reach the Earth’s surface as a result of the breakdown of ozone layer. Recently, UVA has also attracted attention, since, in comparison to UVB, it can penetrate deeply into the skin, which can result in significant health concerns. Sunscreen agents are one of the significant tools to protect the skin from UV irradiation, and it is either organic or in organic. Developing of inorganic UV blockers is essential, which provide efficient UV protection over a wide spectrum rather than organic filters. Furthermore inorganic UV blockers are good comfort, and high safety when applied on human skin. Inorganic materials can absorb, reflect, or scatter the ultraviolet radiation, depending on their particle size, unlike the organic blockers, which absorb the UV irradiation. Nowadays, most inorganic UV-blocking filters are based on (TiO2) and ZnO). ZnO can provide protection in the UVA range. Indeed, ZnO is attractive for in sunscreen formulization, and this relates to many advantages, such as its modest refractive index (2.0), absorption of a small fraction of solar radiation in the UV range which is equal to or less than 385 nm, its high probable recombination of photogenerated carriers (electrons and holes), large direct band gap, high exciton binding energy, non-risky nature, and high tendency towards chemical and physical stability which make it transparent in the visible region with UV protective activity. A significant issue for ZnO use in sunscreens is that it can generate ROS in the presence of UV light because of its photocatalytic activity. Therefore it is essential to make a non-photocatalytic material through modification by other metals. Several efforts have been made to deactivate the photocatalytic activity of ZnO by using inorganic surface modifiers. The doping of ZnO by different metals is another way to modify its photocatalytic activity. Recently, successful doping of ZnO with different metals such as Ce, La, Co, Mn, Al, Li, Na, K, and Cr by various procedures, such as a simple and facile one pot water bath, co-precipitation, hydrothermal, solvothermal, combustion, and sol gel methods has been reported. These materials exhibit greater performance than undoped ZnO towards increasing the photocatalytic activity of ZnO in visible light. Therefore, metal doping can be an effective technique to modify the ZnO photocatalytic activity. However, in the current work, we successfully reduce the photocatalytic activity of ZnO through Na doped ZnO fabricated via sol-gel and hydrothermal methods.

Keywords: photocatalytic, ROS, UVA, ZnO

Procedia PDF Downloads 114
1487 Optimization of Radiation Therapy with a Nanotechnology Based Enzymatic Therapy

Authors: R. D. Esposito, V. M. Barberá, P. García Morales, P. Dorado Rodríguez, J. Sanz, M. Fuentes, D. Planes Meseguer, M. Saceda, L. Fernández Fornos, M. P. Ventero

Abstract:

Results obtained by our group on glioblastoma multiforme (GBM) primary cultures , show a dramatic potentiation of radiation effects when 2 units/ml of D-amino acid oxidase (DAO) enzyme are added, free or immobilized in magnetic nanoparticles, to irradiated samples just after the irradiation. Cell cultures were exposed to radiation doses of 7Gy and 15Gy of 6 MV photons from a clinical linear accelerator. At both doses, we observed a clear enhancing effect of radiation-induced damages due to the addition of DAO.

Keywords: D-amino Acid Oxidase (DAO) enzyme, magnetic particles, nanotechnology, radiation therapy enhancement

Procedia PDF Downloads 492
1486 Sunglasses Frame: UV Protection beyond Lens Spectroscopy

Authors: Augusto P. Andrade, Pedro L. Guedes, Pedro T. Da Silva, Liliane Ventura

Abstract:

The present study evaluates the contribution of sunglasses frames as additional eye safety for ultraviolet backscatter light. Current sunglasses standards establish safe limits regarding lens transmittance in the 280 nm to 380 nm range. However, frames are additionally relevant in protecting the eyes from ultraviolet exposure. This study involves the use of a prototype that simulates backscattered light environments and quantifies the contribution of the frame as a function of the light that reaches the eye when wearing sunglasses. The prototype consists of an LED illuminated sphere, a mannequin head with optical sensors, and baseline and measurements are performed. A set of 29 samples was tested, and results show the variation of light blocking presented by different types of frames, ranging from 68% to 80%. This is still ongoing research. Prototype improvements for allowing albedo simulation, as well as the six types of sky simulation, are being implemented to show the intensity of UV light reaching the eye for several environments worldwide.

Keywords: sunglasses standards, sunglasses frame, ultraviolet protection, albedo

Procedia PDF Downloads 74
1485 Estimation of Global and Diffuse Solar Radiation Over Two Cities of Sindh, Pakistan

Authors: M. A. Ahmed, Sidra A. Shaikh, M. W. Akhtar

Abstract:

Global and Diffuse Solar radiation on horizontal surface over two cities of Sindh, namely Jacobabad and Rohri were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization in Sindh province. The result obtained shows a high variation in direct and diffuse component of solar radiation in summer and winter months (80% direct and 20% diffuse). The contribution of diffuse solar radiation is low even in monsoon months i.e. July and August. The appearance of cloud is rare even in monsoon months. The estimated value indicates that this part of Sindh has higher solar potential and solar panels can be used for power generation. The solar energy can be utilized throughout the year in this part of Sindh, Pakistan.

Keywords: solar potential over Sindh, global and diffuse solar radiation, radiation over two cities of Sindh, environmental engineering

Procedia PDF Downloads 408
1484 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect

Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop

Abstract:

In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.

Keywords: heat transfer, radiation effect, shrinking sheet unsteady flow

Procedia PDF Downloads 357
1483 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye

Authors: Vishakha Parihar

Abstract:

This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.

Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process

Procedia PDF Downloads 145
1482 A Review of Protocols and Guidelines Addressing the Exposure of Occupants to Electromagnetic Field (EMF) Radiation in Buildings

Authors: Shabnam Monadizadeh, Charles Kibert, Jiaxuan Li, Janghoon Woo, Ashish Asutosh, Samira Roostaei, Maryam Kouhirostami

Abstract:

A significant share of the technology that has emerged over the past several decades produces electromagnetic field (EMF) radiation. Communications devices, household appliances, industrial equipment, and medical devices all produce EMF radiation with a variety of frequencies, strengths, and ranges. Some EMF radiation, such as Extremely Low Frequency (ELF), Radio Frequency (RF), and the ionizing range have been shown to have harmful effects on human health. Depending on the frequency and strength of the radiation, EMF radiation can have health effects at the cellular level as well as at brain, nervous, and cardiovascular levels. Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMF radiation. By introducing a more comprehensive field of EMF radiation study and practice, architects and designers can design for a safer electromagnetic (EM) indoor environment, and, as building and construction specialists, will be able to monitor and reduce EM radiation. This paper identifies the nature of EMF radiation in the built environment, the various EMF radiation sources, and its human health effects. It addresses European and US regulations for EMF radiation in buildings and provides a preliminary action plan. The challenges of developing measurement protocols for the various EMF radiation frequency ranges and determining the effects of EMF radiation on building occupants are discussed. This paper argues that a mature method for measuring EMF radiation in building environments and linking these measurements to human health impacts occupant health should be developed to provide adequate safeguards for human occupants of buildings for future research.

Keywords: biological affection, electromagnetic field, building regulation, human health, healthy building, clean construction

Procedia PDF Downloads 134
1481 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia

Authors: Benedictus Asriparusa

Abstract:

Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.

Keywords: estimation, solar radiation power, REST 2, solar transmittance

Procedia PDF Downloads 395
1480 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 94
1479 The Study of γ- Radiolysis of 1.2.4-Trichlorobenzene in Methanol Solution

Authors: Samir Karimov, Elshad Abdullayev, Muslum Gurbanov

Abstract:

As one of the γ-radiolysis products of hexachlorocyclohexane and hexachlorobenzene, the study of 1.4 g/L concentrated 1,2,4-trichlorobenzene (TCB) in methanol solution has been irradiated at 0-209.3 kGy dose of γ-radiation and the results have been studied via GC-MS. At maximum radiation dose of 209.3 kGy 91.38% of TCB has converted into different organic compounds, such as 1,4-, 1,3- and 1,2- dichlorobenzenes (DCB), chlorobenzene, toluene, benzene and other chlorinated and non-chlorinated compounds. The variation of compounds formed by γ-radiolysis depends on the nature of solvent and radiation dose. One of the frequently identified radiolysis products of TCB in different organic solvents - 1,4-DCB studied quantitatively with external standard. The concentration of DCB increases by increasing absorbed radiation dose to approximately 131.8 kGy, then at higher doses with its conversion into chlorobenzene, it decreases.

Keywords: γ-radiolysis, chlorinated pesticides, radiation dose, dechlorination

Procedia PDF Downloads 80
1478 Numerical Simulation of Solar Reactor for Water Disinfection

Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik

Abstract:

Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.

Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent

Procedia PDF Downloads 316
1477 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama

Abstract:

In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: radiology, dosimetry, radiation, dose, transmission

Procedia PDF Downloads 464
1476 Thermal Radiation and Noise Safety Assessment of an Offshore Platform Flare Stack as Sudden Emergency Relief Takes Place

Authors: Lai Xuejiang, Huang Li, Yang Yi

Abstract:

To study the potential hazards of the sudden emergency relief of flare stack, the thermal radiation and noise calculation of flare stack is carried out by using Flaresim program 2.0. Thermal radiation and noise analysis should be considered as the sudden emergency relief takes place. According to the Flaresim software simulation results, the thermal radiation and noise meet the requirement.

Keywords: flare stack, thermal radiation, safety assessment, noise

Procedia PDF Downloads 322
1475 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 83
1474 UV Functionalised Short Implants as an Alternative to Avoid Crestal Sinus Lift Procedure: Controlled Case Series

Authors: Naira Ghambaryan, Gagik Hakobyan

Abstract:

Purpose:The study was to evaluate the survival rate of short implants (5-6 mm) functionalized with UV radiation placed in the posterior segments of the atrophied maxilla. Materials and Methods:The study included 47 patients with unilateral/bilateral missing teeth and vertical atrophy of the posterior maxillary area. A total of 64 short UV-functionalized implants and 62 standard implants over 10 mm in length were placed in patients. The clinical indices included the following parameters: ISQБ MBL, OHIP-G scale. Results: For short implants, the median ISQ at placement was 62.2 for primary stability, and the median ISQ at 5 months was 69.6 ISQ. For standart implant, the mean ISQ at placement was 64.3 ISQ, and ISQ after 5 months was 71.6 ISQ. Аfter 6 months mean MBL short implants 0.87 mm, after 1 year, 1.13 mm, after 5 year was 1.48 mm. Аfter 6 months, mean MBL standard implants 0.84 mm, after 1 year, 1.24 mm, after 5 year was 1.58 mm. Mean OHIP-G scores -patients satisfaction with the implant at 4.8 ± 0.3, satisfaction with the operation 4.6 ± 0.4; satisfaction with prosthetics 4.7 ± 0.5. Cumulative 5-year short implants rates was 96.7%, standard implants was 97.4%, and prosthesis cumulative survival rate was 97.2%. Conclusions: Short implants with ultraviolet functionalization for prosthetic rehabilitation of the posterior resorbed maxilla region is a reliable, reasonable alternative to sinus lift, demonstrating fewer complications, satisfactory survival of a 5-year follow-up period, and reducing the number of additional surgical interventions and postoperative complications.

Keywords: short implant, ultraviolet functionalization, atrophic posterior maxilla, prosthodontic rehabilitation

Procedia PDF Downloads 55
1473 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)

Authors: Anil Kawan, Soon Jae Yu, Jong Min Park

Abstract:

GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.

Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet

Procedia PDF Downloads 393
1472 Electromagnetic Radiation Absorbers on the Basis of Fibrous Materials with the Content of Allotropic Carbon Forms

Authors: Elena S. Belousova, Olga V. Boiprav

Abstract:

A technique for incorporating particles of allotropic forms of carbon into a fibrous material has been developed. It can be used for the manufacture of composite electromagnetic radiation absorbers. The frequency characteristics of electromagnetic radiation reflection and transmission coefficients in the microwave range of absorbers on the basis of powdered carbon black, activated carbon, shungite, graphite, manufactured in accordance with the developed technique, have been studied.

Keywords: carbon, graphite, electromagnetic radiation absorber, shungite

Procedia PDF Downloads 127
1471 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure and to determine the impact of certain parameters on the patient dose. Method: The radiation dose was measured by TLD devices (thermoluminescent dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: dosimetry, radiation dose, interventional radiology procedures, patient radiation dose

Procedia PDF Downloads 75
1470 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria

Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi

Abstract:

In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.

Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters

Procedia PDF Downloads 467
1469 Mechanistic Structural Insights into the UV Induced Apoptosis via Bcl-2 proteins

Authors: Akash Bera, Suraj Singh, Jacinta Dsouza, Ramakrishna V. Hosur, Pushpa Mishra

Abstract:

Ultraviolet C (UVC) radiation induces apoptosis in mammalian cells and it is suggested that the mechanism by which this occurs is the mitochondrial pathway of apoptosis through the release of cytochrome c from the mitochondria into the cytosol. The Bcl-2 family of proteins pro-and anti-apoptotic is the regulators of the mitochondrial pathway of apoptosis. Upon UVC irradiation, the proliferation of apoptosis is enhanced through the downregulation of the anti-apoptotic protein Bcl-xl and up-regulation of Bax. Although the participation of the Bcl-2 family of proteins in apoptosis appears responsive to UVC radiation, to the author's best knowledge, it is unknown how the structure and, effectively, the function of these proteins are directly impacted by UVC exposure. In this background, we present here a structural rationale for the effect of UVC irradiation in restoring apoptosis using two of the relevant proteins, namely, Bid-FL and Bcl-xl ΔC, whose solution structures have been reported previously. Using a variety of biophysical tools such as circular dichroism, fluorescence and NMR spectroscopy, we show that following UVC irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV exposure than Bid-FL. From the NMR data, dramatic structural perturbations (α-helix to β-sheet) are seen to occur in the BH3 binding region, a crucial segment of Bcl-xlΔC which impacts the efficacy of its interactions with pro-apoptotic tBid. These results explain the regulation of apoptosis by UVC irradiation. Our results on irradiation dosage dependence of the structural changes have therapeutic potential for the treatment of cancer.

Keywords: Bid, Bcl-xl, UVC, apoptosis

Procedia PDF Downloads 99
1468 Multilayer Thermal Screens for Greenhouse Insulation

Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel

Abstract:

Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.

Keywords: energy-saving thermal screen, greenhouse cover material, heat transfer coefficient, hot box

Procedia PDF Downloads 119
1467 The Analysis of Personalized Low-Dose Computed Tomography Protocol Based on Cumulative Effective Radiation Dose and Cumulative Organ Dose for Patients with Breast Cancer with Regular Chest Computed Tomography Follow up

Authors: Okhee Woo

Abstract:

Purpose: The aim of this study is to evaluate 2-year cumulative effective radiation dose and cumulative organ dose on regular follow-up computed tomography (CT) scans in patients with breast cancer and to establish personalized low-dose CT protocol. Methods and Materials: A retrospective study was performed on the patients with breast cancer who were diagnosed and managed consistently on the basis of routine breast cancer follow-up protocol between 2012-01 and 2016-06. Based on ICRP (International Commission on Radiological Protection) 103, the cumulative effective radiation doses of each patient for 2-year follow-up were analyzed using the commercial radiation management software (Radimetrics, Bayer healthcare). The personalized effective doses on each organ were analyzed in detail by the software-providing Monte Carlo simulation. Results: A total of 3822 CT scans on 490 patients was evaluated (age: 52.32±10.69). The mean scan number for each patient was 7.8±4.54. Each patient was exposed 95.54±63.24 mSv of radiation for 2 years. The cumulative CT radiation dose was significantly higher in patients with lymph node metastasis (p = 0.00). The HER-2 positive patients were more exposed to radiation compared to estrogen or progesterone receptor positive patient (p = 0.00). There was no difference in the cumulative effective radiation dose with different age groups. Conclusion: To acknowledge how much radiation exposed to a patient is a starting point of management of radiation exposure for patients with long-term CT follow-up. The precise and personalized protocol, as well as iterative reconstruction, may reduce hazard from unnecessary radiation exposure.

Keywords: computed tomography, breast cancer, effective radiation dose, cumulative organ dose

Procedia PDF Downloads 161