Search results for: twin steel plates-concrete composite shear wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5632

Search results for: twin steel plates-concrete composite shear wall

292 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 317
291 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: construction ecology, industrial ecology, urban topology, environmental planning

Procedia PDF Downloads 88
290 Determining Factors of Suspended Glass Systems with Pre-Stress Cable Truss

Authors: Cemil Atakara, Hüseyin Eryaman

Abstract:

The use of glass as an envelope of a building has been increasing in the twentieth century. For more transparency and dematerialization new glass facade types have emerged in the past two decades which depends on point fixed glazing system (PFGS). The aim of this study is to analyze of the PFGS systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. This new system is desired because it enhances the transparency of the façade and it minimizes the component of the frames or of the profiles. This PFGS led to new structural elements which use cables, rods, trusses when designing a glass building facades, this structural element called the suspended glass system with pre-stressed cable truss (SGSPCT) which has been used for the first time in 1980 in Serres building. The twenty glass buildings which are designed in different systems have been analyzed during this study. After these analyses five selected SGSPCT building analyzed deeply and one skeletal frame building selected from Lefkosa redesigned according to the analysis results. These selected buildings have been included of various cable-truss system typologies and degree. The methodology of this study is building analysis method and literature survey with the help of books, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings and case building have been detailed analyzed with their architectural drawings, photographs and details. A gridshell structure can be compared with a shell structure; it consists of discrete members connecting nodal points. As these nodal points lie on the surface of an imaginary shell, their shapes function almost identically. Difference between shell and gridshell structures can be found in the fact that, due to their free-form and thus, due to the presence of bending forces, gridshells are required to resist loading through their cross-section. This research is divided into parts. A general study about the glass building and cable-glass and grid shell system will be done in the first chapters. Structural analyses and detailed analyses with schematic drawings with the plans, sections of the selected buildings will be explained in the second part. The third part it consists of the advantages and disadvantages of the use of the SGSPCT and Grid Shell in architecture. The study consists of four chapters including the introduction chapter. The general information of the SGSPCT and glazing system has been mentioned in the first chapter. Structural features, typologies, transparency principle and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of case building have been done according to their schematic drawings with the plans, sections in the third chapter. After third chapter SGSPCT discussed on to the case building and selected buildings. SGSPCT systems have been compared with their advantages and disadvantages to the other systems. Advantages of cable-truss systems and SGSPCT have been concluded that the use of glass substrates in the last chapter.

Keywords: cable truss, glass, grid shell, transparency

Procedia PDF Downloads 383
289 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 56
288 Molecular Dynamics Simulation Study of the Influence of Potassium Salts on the Adsorption and Surface Hydration Inhibition Performance of Hexane, 1,6 - Diamine Clay Mineral Inhibitor onto Sodium Montmorillonite

Authors: Justine Kiiza, Xu Jiafang

Abstract:

The world’s demand for energy is increasing rapidly due to population growth and a reduction in shallow conventional oil and gas reservoirs, resorting to deeper and mostly unconventional reserves like shale oil and gas. Most shale formations contain a large amount of expansive sodium montmorillonite (Na-Mnt), due to high water adsorption, hydration, and when the drilling fluid filtrate enters the formation with high Mnt content, the wellbore wall can be unstable due to hydration and swelling, resulting to shrinkage, sticking, balling, time wasting etc., and well collapse in extreme cases causing complex downhole accidents and high well costs. Recently, polyamines like 1, 6 – hexane diamine (HEDA) have been used as typical drilling fluid shale inhibitors to minimize and/or cab clay mineral swelling and maintain the wellbore stability. However, their application is limited to shallow drilling due to their sensitivity to elevated temperature and pressure. Inorganic potassium salts i.e., KCl, have long been applied for restriction of shale formation hydration expansion in deep wells, but their use is limited due to toxicity. Understanding the adsorption behaviour of HEDA on Na-Mnt surfaces in present of organo-salts, organic K-salts e.g., HCO₂K - main component of organo-salt drilling fluid, is of great significance in explaining the inhibitory performance of polyamine inhibitors. Molecular dynamic simulations (MD) were applied to investigate the influence of HCO₂K and KCl on the adsorption mechanism of HEDA on the Na-Mnt surface. Simulation results showed that adsorption configurations of HEDA are mainly by terminal amine groups with a flat-lying alkyl hydrophobic chain. Its interaction with the clay surface decreased the H-bond number between H₂O-clay and neutralized the negative charge of the Mnt surface, thus weakening the surface hydration ability of Na-Mnt. The introduction of HCO₂K greatly improved inhibition ability, coordination of interlayer ions with H₂O as they were replaced by K+, and H₂O-HCOO- coordination reduced H₂O-Mnt interactions, mobility and transport capability of H₂O molecules were more decreased. While KCl showed little ability and also caused more hydration with time, HCO₂K can be used as an alternative for offshore drilling instead of toxic KCl, with a maximum concentration noted in this study as 1.65 wt%. This study provides a theoretical elucidation for the inhibition mechanism and adsorption characteristics of HEDA inhibitor on Na-Mnt surfaces in the presence of K+-salts and may provide more insight into the evaluation, selection, and molecular design of new clay-swelling high-performance WBDF systems used in oil and gas complex offshore drilling well sections.

Keywords: shale, hydration, inhibition, polyamines, organo-salts, simulation

Procedia PDF Downloads 16
287 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 139
286 Climate Change and Landslide Risk Assessment in Thailand

Authors: Shotiros Protong

Abstract:

The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.

Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand

Procedia PDF Downloads 531
285 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 27
284 Study on Adding Story and Seismic Strengthening of Old Masonry Buildings

Authors: Youlu Huang, Huanjun Jiang

Abstract:

A large number of old masonry buildings built in the last century still remain in the city. It generates the problems of unsafety, obsolescence, and non-habitability. In recent years, many old buildings have been reconstructed through renovating façade, strengthening, and adding floors. However, most projects only provide a solution for a single problem. It is difficult to comprehensively solve problems of poor safety and lack of building functions. Therefore, a comprehensive functional renovation program of adding reinforced concrete frame story at the bottom via integrally lifting the building and then strengthening the building was put forward. Based on field measurement and YJK calculation software, the seismic performance of an actual three-story masonry structure in Shanghai was identified. The results show that the material strength of masonry is low, and the bearing capacity of some masonry walls could not meet the code requirements. The elastoplastic time history analysis of the structure was carried out by using SAP2000 software. The results show that under the 7 degrees rare earthquake, the seismic performance of the structure reaches 'serious damage' performance level. Based on the code requirements of the stiffness ration of the bottom frame (lateral stiffness ration of the transition masonry story and frame story), the bottom frame story was designed. The integral lifting process of the masonry building was introduced based on many engineering examples. The reinforced methods for the bottom frame structure strengthened by the steel-reinforced mesh mortar surface layer (SRMM) and base isolators, respectively, were proposed. The time history analysis of the two kinds of structures, under the frequent earthquake, the fortification earthquake, and the rare earthquake, was conducted by SAP2000 software. For the bottom frame structure, the results show that the seismic response of the masonry floor is significantly reduced after reinforced by the two methods compared to the masonry structure. The previous earthquake disaster indicated that the bottom frame is vulnerable to serious damage under a strong earthquake. The analysis results showed that under the rare earthquake, the inter-story displacement angle of the bottom frame floor meets the 1/100 limit value of the seismic code. The inter-story drift of the masonry floor for the base isolated structure under different levels of earthquakes is similar to that of structure with SRMM, while the base-isolated program is better to protect the bottom frame. Both reinforced methods could significantly improve the seismic performance of the bottom frame structure.

Keywords: old buildings, adding story, seismic strengthening, seismic performance

Procedia PDF Downloads 103
283 Development of an Integrated Methodology for Fouling Control in Membrane Bioreactors

Authors: Petros Gkotsis, Anastasios Zouboulis, Manasis Mitrakas, Dimitrios Zamboulis, E. Peleka

Abstract:

The most serious drawback in wastewater treatment using membrane bioreactors (MBRs) is membrane fouling which gradually leads to membrane permeability decrease and efficiency deterioration. This work is part of a research project that aims to develop an integrated methodology for membrane fouling control, using specific chemicals which will enhance the coagulation and flocculation of compounds responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate acting as a pre-treatment step. For this purpose, a pilot-scale plant with fully automatic operation achieved by means of programmable logic controller (PLC) has been constructed and tested. The experimental set-up consists of four units: wastewater feed unit, bioreactor, membrane (side-stream) filtration unit and permeate collection unit. Synthetic wastewater was fed as the substrate for the activated sludge. The dissolved oxygen (DO) concentration of the aerobic tank was maintained in the range of 2-3 mg/L during the entire operation by using an aerator below the membrane module. The membranes were operated at a flux of 18 LMH while membrane relaxation steps of 1 min were performed every 10 min. Both commercial and composite coagulants are added in different concentrations in the pilot-scale plant and their effect on the overall performance of the ΜΒR system is presented. Membrane fouling was assessed in terms of TMP, membrane permeability, sludge filterability tests, total resistance and the unified modified fouling index (UMFI). Preliminary tests showed that particular attention should be paid to the addition of the coagulant solution, indicating that pipe flocculation effectively increases hydraulic retention time and leads to voluminous sludge flocs. The most serious drawback in wastewater treatment using MBRs is membrane fouling, which gradually leads to membrane permeability decrease and efficiency deterioration. This results in increased treatment cost, due to high energy consumption and the need for frequent membrane cleaning and replacement. Due to the widespread application of MBR technology over the past few years, it becomes clear that the development of a methodology to mitigate membrane fouling is of paramount importance. The present work aims to develop an integrated technique for membrane fouling control in MBR systems and, thus, contribute to sustainable wastewater treatment.

Keywords: coagulation, membrane bioreactor, membrane fouling, pilot plant

Procedia PDF Downloads 279
282 Study of Potato Cyst Nematodes (Globodera Rostochiensis, Globodera pallida) in Georgia

Authors: Ekatereine Abashidze, Nino Nazarashvili, Dali Gaganidze, Oleg Gorgadze, Mariam Aznarashvili, Eter Gvritishvili

Abstract:

Potato is one of the leading agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. Potato production is equal to 25,000 ha and its average yield is 20-25 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (Globodera pallida (Stone) Behrens and Globodera rostochiensis (Wollenveber) Behrens) are harmful around the world. PCN is among the most difficult plant pests to control. Cysts protected by a durable wall can survive for over 30 years . Control of PCN (G. pallida and G. rostochiensis) is regulated by Council Directive 2007/33/EE C. There was no legislative regulation of these pests in Georgia before 2016. By Resolution #302 from July 1, 2016, developed within the action plan of the DCFTA (Deep and Comprehensive Free Trade Area) the Government of Georgia established control over potato cyst nematodes. The Agreement about the legal acts approximation to EU legislation concerns the approval of rules of PCN control and research of these pests. Taking into consideration the above mentioned, it is necessary to study PCN (G. pallida and G. rostochiensis) in the potato-growing areas of Georgia. The aim of this research is to conduct survey of potato cyst nematodes (Globodera rostochiensis and G. pallida) in two geographically distinct regions of Georgia - Samtskhe - Javakheti and Svanetii and to identify the species G. Rostochiensis and G. Pallida by the morphological - morphometric and molecular methods. Soil samples were taken in each village, in a zig-zag pattern on the potato fields of the private sector, using the Metlitsky method. Samples were taken also from infested potato plant roots. To extract nematode cysts from soil samples Fanwick can be used according to standard methods by EPPO. Cysts were measured under a stereoscopic microscope (Leica M50). Identification of the nematod species was carried out according to morphological and morphometric characteristics of the cysts and larvae using appropriate protocols EPPO. For molecular identification, a multiplex PCR test was performed by the universal ITS5 and cyst nematodes’ (G. pallida, G. rostochiensis) specific primers. To identify the species of potato cyst nematodes (PCN) in two regions (Samtskhe-Javakheti and Svaneti) were taken 200 samples, among them: 80 samples in Samtskhe-Javakheti region and 120 in Svaneti region. Cysts of Globiodera spp. were revealed in 50 samples obtained from Samtskhe-Javakheti and 80 samples from Svaneti regions. Morphological, morphometric and molecular analysis of two forms of PCN found in investigated regions of Georgia shows that one form of PCN belongs to G. rostoshiensi; the second form is the different species of Globodera sp.t is the subject of future research. Despite the different geographic locations, larvae and cysts of G. rostoshiensi were found in both regions. But cysts and larvae of G. pallida were not reported. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia: Project # FR17_235.

Keywords: cyst nematode, globodera rostochiensis, globodera pallida, morphologic-morphometric measurement

Procedia PDF Downloads 181
281 Paramedic Strength and Flexibility: Findings of a 6-Month Workplace Exercise Randomised Controlled Trial

Authors: Jayden R. Hunter, Alexander J. MacQuarrie, Samantha C. Sheridan, Richard High, Carolyn Waite

Abstract:

Workplace exercise programs have been recommended to improve the musculoskeletal fitness of paramedics with the aim of reducing injury rates, and while they have shown efficacy in other occupations, they have not been delivered and evaluated in Australian paramedics to our best knowledge. This study investigated the effectiveness of a 6-month workplace exercise program (MedicFit; MF) to improve paramedic fitness with or without health coach (HC) support. A group of regional Australian paramedics (n=76; 43 male; mean ± SD 36.5 ± 9.1 years; BMI 28.0 ± 5.4 kg/m²) were randomised at the station level to either exercise with remote health coach support (MFHC; n=30), exercise without health coach support (MF; n=23), or no-exercise control (CON; n=23) groups. MFHC and MF participants received a 6-month, low-moderate intensity resistance and flexibility exercise program to be performed ƒ on station without direct supervision. Available exercise equipment included dumbbells, resistance bands, Swiss balls, medicine balls, kettlebells, BOSU balls, yoga mats, and foam rollers. MFHC and MF participants were also provided with a comprehensive exercise manual including sample exercise sessions aimed at improving musculoskeletal strength and flexibility which included exercise prescription (i.e. sets, reps, duration, load). Changes to upper-body (push-ups), lower-body (wall squat) and core (plank hold) strength and flexibility (back scratch and sit-reach tests) after the 6-month intervention were analysed using repeated measures ANOVA to compare changes between groups and over time. Upper-body (+20.6%; p < 0.01; partial eta squared = 0.34 [large effect]) and lower-body (+40.8%; p < 0.05; partial eta squared = 0.08 (moderate effect)) strength increased significantly with no interaction or group effects. Changes to core strength (+1.4%; p=0.17) and both upper-body (+19.5%; p=0.56) and lower-body (+3.3%; p=0.15) flexibility were non-significant with no interaction or group effects observed. While upper- and lower-body strength improved over the course of the intervention, providing a 6-month workplace exercise program with or without health coach support did not confer any greater strength or flexibility benefits than exercise testing alone (CON). Although exercise adherence was not measured, it is possible that participants require additional methods of support such as face-to-face exercise instruction and guidance and individually-tailored exercise programs to achieve adequate participation and improvements in musculoskeletal fitness. This presents challenges for more remote paramedic stations without regular face-to-face access to suitably qualified exercise professionals, and future research should investigate the effectiveness of other forms of exercise delivery and guidance for these paramedic officers such as remotely-facilitated digital exercise prescription and monitoring.

Keywords: workplace exercise, paramedic health, strength training, flexibility training

Procedia PDF Downloads 117
280 The Role of Cognitive Control and Social Camouflage Associated with Social Anxiety Autism Spectrum Conditions

Authors: Siqing Guan, Fumiyo Oshima, Eiji Shimizu, Nozomi Tomita, Toru Takahashi, Hiroaki Kumano

Abstract:

Risk factors for social anxiety in autism spectrum conditions involve executive attention, emotion regulation, and thought regulation as processes of cognitive dysregulation. Social camouflaging behaviors as strategies used to mask and/or compensate for autism characteristics during social interactions in autism spectrum conditions have also been emphasized. However, the role of cognitive dysregulation and social camouflaging related to social anxiety in autism spectrum conditions has not been clarified. Whether these factors are specific to social anxiety in autism spectrum conditions or common to social anxiety independent of autism spectrum conditions needs to be clarified. Here, we explored risk factors specific to social anxiety in autism spectrum conditions and general risk factors for social anxiety independent of autism spectrum conditions. From the Japanese participants in early adulthood (age=18~39) of the online survey in Japan, those who exceeded the Japanese version Autism-Spectrum Quotient cutoff (33 points or more )were divided into the autism spectrum conditions group (ASC; N=255, mean age=32.08, SD age=5.16)and those who did not exceed the cutoff were divided into the non-autism spectrum conditions group (Non-ASC; N=255, mean age=31.70, SD age=5.09). Using the Japanese versions of the Social Phobia Scale, the Social Interaction Anxiety Scale, and the Short Fear of Negative Evaluation Scale, a composite score for social anxiety was calculated using a method of principal. We also measured emotional control difficulties using the Difficulties in Emotion Regulation Scale, executive attention using the Effortful Control Scale for Adults, rumination using the Rumination-Reflection Questionnaire, and worry using the Penn State Worry Questionnaire. This study was passed through the review of the Ethics Committee. No conflicts of interest. Multiple regression analysis with forced entry method was used to predict social anxiety in the ASC and non-ASC groups separately, based on executive attention, emotion dysregulation, worry, rumination, and social camouflage. In the ASC group, emotion dysregulation (β=.277, p<.001), worry (β=.162, p<.05), assimilation (β=.308, p<.001) and masking (β=.275, p<.001) were significant predictors of social anxiety (F (7,247) = 45.791, p <.001, R2=.565). In the non-ASC groups,emotion dysregulation (β=.171, p<.05), worry (β=.344,p <.001), assimilation (β=.366,p <.001) and executive attention (β=-.132,p <.05) were significant predictors of social anxiety (F (7,207) =47.333, p <.001, R2=.615).The findings suggest that masking was shown to be a risk factor for social anxiety specific to autism spectrum conditions, while emotion dysregulation, worry, and assimilation were shown to be common risk factors for social anxiety, regardless of autism spectrum conditions. In addition, executive attention is a risk factor for social anxiety without autism spectrum conditions.

Keywords: autism spectrum, cognitive control, social anxiety, social camouflaging

Procedia PDF Downloads 186
279 Transient Heat Transfer: Experimental Investigation near the Critical Point

Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut

Abstract:

In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.

Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators

Procedia PDF Downloads 199
278 Effect of Different By-Products on Growth Performance, Carcass Characteristics and Serum Parameters of Growing Simmental Crossbred Cattle

Authors: Fei Wang, Jie Meng, Qingxiang Meng

Abstract:

China is rich in straw and by-product resources, whose utilization has always been a hot topic. The objective of this study was to investigate the effect of feeding soybean straw and wine distiller’s grain as a replacement for corn stover on performance of beef cattle. Sixty Simmental×local crossbred bulls averaging 12 months old and 335.7 ± 39.1 kg of body weight (BW) were randomly assigned into four groups (15 animals per group) and allocated to a diet with 40% maize stover (MSD), a diet with 40% wrapping package maize silage (PMSD), a diet with 12% soybean straw plus 28% maize stover (SSD) and a diet with 12% wine distiller’s grain plus 28% maize stover (WDD). Bulls were fed ad libitum an TMR consisting of 36.0% maize, 12.5% of DDGS, 5.0% of cottonseed meal, 4.0% of soybean meal and 40.0% of by-product as described above. Treatment period lasted for 22 weeks, consisting of 1 week of dietary adaptation. The results showed that dry matter intake (DMI) was significantly higher (P < 0.01) for PMSD group than MSD and SSD groups during 0-7 week and 8-14week, and PMSD and WDD groups had higher (P < 0.05) DMI values than MSD and SSD groups during the whole period. Average daily gain (ADG) values were 1.56, 1.72, 1.68 and 1.58 kg for MSD, PMSD, SSD and WDD groups respectively, although the differences were not significant (P > 0.05). The value of blood sugar concentration was significantly higher (P < 0.01) for MSD group than WDD group, and the blood urea nitrogen concentration of SSD group was lower (P < 0.05) than MSD and WDD groups. No significant difference (P > 0.05) of serum total cholesterol, triglycerides or total protein content was observed among the different groups. Ten bulls with similar body weight were selected at the end of feeding trial and slaughtered for measurement of slaughtering performance, carcass quality and meat chemical composition. SSD group had significantly lower (P < 0.05) shear force value and cooking loss than MSD and PMSD groups. The pH values of MSD and SSD groups were lower (P < 0.05) than PMSD and WDD groups. WDD group had a higher fat color brightness (L*) value than PMSD and SSD groups. There were no significant differences in dressing percentage, meat percentage, top grade meat weight, ribeye area, marbling score, meat color and meat chemical compositions among different dietary treatments. Based on these results, the packed maize stover silage showed a potential of improving the average daily gain and feed intake of beef cattle. Soybean straw had a significant effect on improving the tenderness and reducing cooking loss of beef. In general, soybean straw and packed maize stover silage would be beneficial to nitrogen deposition and showed a potential to substitute maize stover in beef cattle diets.

Keywords: beef cattle, by-products, carcass quality, growth performance

Procedia PDF Downloads 480
277 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films

Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu

Abstract:

Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.

Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain

Procedia PDF Downloads 128
276 Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study

Authors: Ahmed Tamer AlMotasem, Jens Bergström, Anders Gåård, Pavel Krakhmalev, Thijs Jan Holleboom

Abstract:

In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation.

Keywords: adhesion, cementite, galling, molecular dynamics

Procedia PDF Downloads 279
275 Statistical Design of Central Point for Evaluate the Combination of PH and Cinnamon Essential Oil on the Antioxidant Activity Using the ABTS Technique

Authors: H. Minor-Pérez, A. M. Mota-Silva, S. Ortiz-Barrios

Abstract:

Substances of vegetable origin with antioxidant capacity have a high potential for application on the conservation of some foods, can prevent or reduce for example oxidation of lipids. However a food is a complex system whose wide variety of components wich can reduce or eliminate this antioxidant capacity. The antioxidant activity can be determined with the ABTS technique. The radical ABTS+ is generated from the acid 2, 2´ - Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). This radical is a composite color bluish-green, stable and with a spectrum of absorption into the UV-visible. The addition of antioxidants causes discoloration, value that can be reported as a percentage of inhibition of the cation radical ABTS+. The objective of this study was evaluated the effect of the combination of the pH and the essential oil of cinnamon (EOC) on inhibition of the radical ABTS+, using statistical design of central point (Design Expert) to obtain mathematical models that describe this phenomenon. Were evaluated 17 treatments with combinations of pH 5, 6 and 7 (citrate-phosphate buffer) and the concentration of essential oil of cinnamon (C): 0 µg/mL, 100 µg/mL and 200 µg/mL. The samples were analyzed using the ABTS technique. The reagent was dissolved in methanol 80% to standardized the absorbance to 0.7 +/- 0.1 at 754 nm. Then samples were mixed with reagent standardized ABTS and after 1 min and 7 min absorbance was read for each treatment at 754 nm. Was used a curve pattern with vitamin C and reported the values as inhibition (%) of radical ABTS+. The statistical analysis shows the experimental results were adjusted to a quadratic model, to the times of 1 min and 7 min. This model describes the influence of the factors investigated independently: pH and cinnamon essential oil (µg/mL) and the effect of the interaction between pH*C, as well as the square of the pH2 and C2. The model obtained was Y = 10.33684 - 3.98118*pH + 1.17031*C + 0.62745*pH2 - 3.26675*10-3*C2 - 0.013112*pH*C, where Y is the response variable. The coefficient of determination was 0.9949 for 1 min. The equation was obtained at 7 min and = - 10.89710 + 1.52341*pH + 1.32892*C + 0.47953*pH2 - 3.56605*10- *C2 - 0.034687*pH*C. The coefficient of determination was 0.9970. This means that only 1% of the total variation is not explained by the developed models. At 100 µg/mL of EOC was obtained an inhibition percentage of 80%, 84% and 97% for the pH values of 5,6 and 7 respectively, while a value of 200 µg/mL the inhibition (%) was very similar for the treatments. In these values of pH was obtained an inhibition close 97%. In conclusion the pH does not have a significant effect on the antioxidant capacity, while the concentration of EOC was decisive for the antioxidant capacity. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: antioxidant activity, ABTS technique, essential oil of cinnamon, mathematical models

Procedia PDF Downloads 381
274 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 114
273 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes

Authors: Salwa Karboune, Amanda Waglay

Abstract:

Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.

Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides

Procedia PDF Downloads 354
272 Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt

Authors: Kaushal Kishore, Suman Mukhopadhyay, Susovan Das, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting.

Keywords: brittle fracture, cast iron, coupling, double step, pitting, simulated impact tests

Procedia PDF Downloads 104
271 Association of Vulnerability and Behavioural Outcomes of FSWs Linked with TI Prevention HIV Program: An Evidence from Cross-Sectional Behavioural Study in Thane District of Maharashtra

Authors: Jayanta Bora, Sukhvinder Kaur, Ashok Agarwal, Sangeeta Kaul

Abstract:

Background: It is important for targeted interventions to consider vulnerabilities of female sex workers (FSWs) such as poverty, work-related mobility and literacy for effective human immunodeficiency virus (HIV) prevention. This paper examines the association between vulnerability and behavioural outcomes among FSWs in Thane district, Maharashtra under USAID PHFI-PIPPSE project. Methods: Data were used from the Behavioural Tracking Survey, a cross-sectional behavioural study conducted in 2015 with 503 FSWs randomly selected from 12 TI-NGOs which were functioning and providing services to FSWs in Thane district prior to April 2014 in Thane district of Maharashtra. We have created the “vulnerability index”, a composite index of literacy, factors of dependence (alternative livelihood options, current debt), and aspects of sex work (mobility and duration in sex work) as a dependent variable. The key independent measures used were program exposure to intervention, service uptake, self-confidence, and self-identity. Bi-variate and multivariate logistic regressions were used to examine the study objectives. Results: A higher proportion of FSWs who were in the age-group 18–25 years from brothel/street /home/ lodge-based were categorized as highly vulnerable to HIV risk as compared to bar-based sex worker (74.1% versus 59.8%, P,0.002); regression analysis highlighted lower odds of vulnerability among FSWs who were aware of services and visited NGO clinic for medical check-up and counselling for STI [AOR= 0.092, 95% CI 0.018-0.460; P,0.004], However, lower odds of vulnerability on confident in supporting fellow sex worker in crisis [AOR= 0.601, 95% CI 0.476-0.758; P, 0.000] and were able to turn away clients when they refused to use a condom during sex [AOR= 0.524, 95% CI 0.342-0.802; P, 0.003]. Conclusion: The results highlight that FSWs associated with TIs and getting services are less vulnerable and highly empowered. As a result of behavioural change communication and other services provided by TIs, FSWs were able to successfully negotiate about condom use with their clients and manage solidarity in the crisis situation for fellow FSWs. Therefore, it is evident from study paper that TI prevention programs may transform the lives of masses considerably and may open a window of opportunity to infuse the information and awareness about HIV risk.

Keywords: female sex worker, HIV prevention, HIV service uptake, vulnerability

Procedia PDF Downloads 232
270 Fodder Production and Livestock Rearing in Relation to Climate Change and Possible Adaptation Measures in Manaslu Conservation Area, Nepal

Authors: Bhojan Dhakal, Naba Raj Devkota, Chet Raj Upreti, Maheshwar Sapkota

Abstract:

A study was conducted to find out the production potential, nutrient composition, and the variability of the most commonly available fodder trees along with the varying altitude to help optimize the dry matter requirement during winter lean period. The study was carried out from March to June, 2012 in Lho and Prok Village Development Committee of Manaslu Conservation Area (MCA), located in Gorkha district of Nepal. The other objective of the research was to learn the impact of climate change on livestock production linking it with feed availability. The study was conducted in two parts: social and biological. Accordingly, a households (HHs) survey was conducted to collect primary data from 70 HHs, focusing on the perception of respondents on impacts of climatic variability on the feeding management. The next part consisted of understanding yield potential and nutrient composition of the four most commonly available fodder trees (M. azedirach, M. alba, F. roxburghii, F. nemoralis), within two altitudes range: (1500-2000 masl and 2000-2500 masl) by using a RCB design in 2*4 factorial combination of treatments, each replicated four times. Results revealed that majority of the farmers perceived the change in climatic phenomenon more severely within the past five years. Farmers were using different adaptation technologies such as collection of forage from jungle, reducing unproductive animals, fodder trees utilization, and crop by product feeding at feed scarcity period. Ranking of the different fodder trees on the basis of indigenous knowledge and experiences revealed that F. roxburghii was the best-preferred fodder tree species (index value 0.72) in terms overall preferability whereas M. azedirach had highest growth and productivity (index value 0.77), F. roxburghii had highest adoptability (index value 0.69) and palatability (index value 0.69) as well. Similarly, fresh yield and dry matter yield of the each fodder trees was significant (P < 0.01) between the altitude and within species. Fodder trees yield analysis revealed that the highest dry matter (DM) yield (28 kg/tree) was obtained for F. roxburghii but that remained statistically similar (P > 0.05) to the other treatment. On the other hand, most of the parameters: ether extract (EE), acid detergent lignin (ADL), acid detergent fibre (ADF), cell wall digestibility (CWD), relative digestibility (RD), digestible nutrient (TDN), and Calcium (Ca) among the treatments were highly significant (P < 0.01). This indicates the scope of introducing productive and nutritive fodder trees species even at the high altitude to help reduce fodder scarcity problem during winter. The finding also revealed the scope of promoting all available local fodder trees species as crude protein content of these species were similar.

Keywords: fodder trees, yield potential, climate change, nutrient composition

Procedia PDF Downloads 277
269 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator

Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li

Abstract:

A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.

Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator

Procedia PDF Downloads 129
268 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 358
267 Adoptability of Digital Payment for Community Health Workers in Wakiso District, Uganda

Authors: Veronica Kembabazi, Arnold Tigaiza, Juliet Aweko, Charles Opio, Michael Ediau, Elizabeth Ekirapa, Andrew Tusubira, Peter Waiswa

Abstract:

Background: Digital payments have been branded as key in solving health payment challenges, evidence on their adoptability is still limited especially among Community Health Workers (CHWs), yet vital for ensuring sustainability. We therefore assessed the adoptability of digital payments for CHWs in Wakiso district, Uganda. Methods: In December 2022, we conducted a convergent parallel mixed-methods study among 150 randomly selected CHWs in Wakiso district. Supplementary qualitative data were collected from the Digital payment coordinators as Key Informants (KIs). We adopted the Technology Acceptance Model (TAM) framework to assess the adoptability of digital payments among CHWS. Factor analysis was performed to extract composite variables from the original constituting variables. Kaiser-Meyer-Olkin statistics were assessed for each construct to determine appropriateness for data reduction. Using logistic regression for multivariate analysis, we assessed the association between adoptability constructs and the CHW intention to use digital payments. Quantitative data was analyzed using STATA, while qualitative data was transcribed verbatim and analyzed using ATLAS.ti software. Results: Overall, 150 respondents were interviewed and nearly all participants (98.0%) had previously received payments through mobile money, a digital-payment method. The majority (52%) of CHWs said they intend to use digital payment modalities. Perceived risk had an 83% negative influence on the adoptability of digital payment modalities (OR= 0.167, p < 0.01), perceived trust had an almost three times positive influence on the adoptability of digital payment modalities (OR= 2.823, p < 0.01). Qualitative interviews showed that most CHWs reported good experiences in their use of digital health payment modalities except for delays associated with mobile money payments. Mobile money was reported to be easy to use, in addition to fostering financial responsibility compared to cash. Conclusion: CHWs in Wakiso district intend to use digital payment modalities, particularly mobile money/e-cash, and the perceived risk of the payment method and trust are key determinants of its adoptability. Synergized efforts by both payment providers and service operators to manage payment delays and identified risks among mobile money operators could attenuate perceived risk and build trust in digital payment modalities.

Keywords: digital health payments, community health workers, adoptability, technology acceptance model

Procedia PDF Downloads 40
266 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites

Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga

Abstract:

Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.

Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing

Procedia PDF Downloads 77
265 Strengthening by Assessment: A Case Study of Rail Bridges

Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas

Abstract:

The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.

Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening

Procedia PDF Downloads 286
264 Preliminary Studies on Poloxamer-Based Hydrogels with Oregano Essential Oil as Potential Topical Treatment of Cutaneous Papillomas

Authors: Ana Maria Muț, Georgeta Coneac, Ioana Olariu, Ștefana Avram, Ioana Zinuca Pavel, Ionela Daliana Minda, Lavinia Vlaia, Cristina Adriana Dehelean, Corina Danciu

Abstract:

Oregano essential oil is obtained from different parts of the plant Origanum vulgare (fam. Lamiaceae) and carvacrol and thymol are primary components, widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Poloxamers are triblock copolymers (Pluronic®), formed of three non-ionic blocks with a hydrophobic polyoxypropylene central chain flanked by two polyoxyethylene hydrophilic chains. They are known for their biocompatibility, sensitivity to temperature changes (sol-to-gel transition of aqueous solution with temperature increase), but also for their amphiphilic and surface active nature determining the formation of micelles, useful for solubilization of different hydrophobic compounds such as the terpenes and terpenoids contained in essential oils. Thus, these polymers, listed in European and US Pharmacopoeia and approved by FDA, are widely used as solubilizers and gelling agents for various pharmaceutical preparations, including topical hydrogels. The aim of this study was to investigate the posibility of solubilizing oregano essential oil (OEO) in polymeric micelles using polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers to obtain semisolid systems suitable for topical application. A formulation screening was performed, using Pluronic® F-127 in concentration of 20%, Pluronic® L-31, Pluronic® L-61 and Pluronic® L-62 in concentration of 0.5%, 0.8% respectively 1% to obtain the polymeric micelles-based systems. Then, to each selected system, with or without 10% absolute ethanol, 5% or 8% OEO was added. The obtained transparent poloxamer-based hydrogels containing solubilized OEO were further evaluated for pH, rheological characteristics (flow behaviour, viscosity, consistency and spreadability), using consacrated techniques like potentiometric titration, stationary shear flow test, penetrometric method and parallel plate method. Also, in vitro release and permeation of carvacrol from the hydrogels was carried out, using vertical diffusion cells and synthetic hydrophilic membrane and porcine skin respectively. The pH values and rheological features of all tested formulations were in accordance with official requirements for semisolid cutaneous preparations. But, the formulation containing 0.8% Pluronic® L-31, 10% absolute ethanol, 8% OEO and water and the formulation with 1% Pluronic® L-31, 5% OEO and water, produced the highest cumulative amounts of carvacrol released/permeated through the membrane. The present study demonstrated that oregano essential oil can be successfully solubilized in the investigated poloxamer-based hydrogels. These systems can be further investigated as potential topical therapy for cutaneous papillomas. Funding: This research was funded by Project PN-III-P1-1.1-TE2019-0130, Contract number TE47, Romania.

Keywords: oregano essential oil, carvacrol, poloxamer, topical hydrogels

Procedia PDF Downloads 87
263 The Impact of Gestational Weight Gain on Subclinical Atherosclerosis, Placental Circulation and Neonatal Complications

Authors: Marina Shargorodsky

Abstract:

Aim: Gestational weight gain (GWG) has been related to altering future weight-gain curves and increased risks of obesity later in life. Obesity may contribute to vascular atherosclerotic changes as well as excess cardiovascular morbidity and mortality observed in these patients. Noninvasive arterial testing, such as ultrasonographic measurement of carotid IMT, is considered a surrogate for systemic atherosclerotic disease burden and is predictive of cardiovascular events in asymptomatic individuals as well as recurrent events in patients with known cardiovascular disease. Currently, there is no consistent evidence regarding the vascular impact of excessive GWG. The present study was designed to investigate the impact of GWG on early atherosclerotic changes during late pregnancy, using intima-media thickness, as well as placental vascular circulation and inflammatory lesions and pregnancy outcomes. Methods: The study group consisted of 59 pregnant women who gave birth and underwent a placental histopathological examination at the Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Israel, in 2019. According to the IOM guidelines the study group has been divided into two groups: Group 1 included 32 women with pregnancy weight gain within recommended range; Group 2 included 27 women with excessive weight gain during pregnancy. The IMT was measured from non-diseased intimal and medial wall layers of the carotid artery on both sides, visualized by high-resolution 7.5 MHz ultrasound (Apogee CX Color, ATL). Placental histology subdivided placental findings to lesions consistent with maternal vascular and fetal vascular malperfusion according to the criteria of the Society for Pediatric Pathology, subdividing placental findings to lesions consistent with maternal vascular and fetal vascular malperfusion, as well as the inflammatory response of maternal and fetal origin. Results: IMT levels differed between groups and were significantly higher in Group 1 compared to Group 2 (0.7+/-0.1 vs 0.6+/-0/1, p=0.028). Multiple linear regression analysis of IMT included variables based on their associations in univariate analyses with a backward approach. Included in the model were pre-gestational BMI, HDL cholesterol and fasting glucose. The model was significant (p=0.001) and correctly classified 64.7% of study patients. In this model, pre-pregnancy BMI remained a significant independent predictor of subclinical atherosclerosis assessed by IMT (OR 4.314, 95% CI 0.0599-0.674, p=0.044). Among placental lesions related to fetal vascular malperfusion, villous changes consistent with fetal thrombo-occlusive disease (FTOD) were significantly higher in Group 1 than in Group 2, p=0.034). In Conclusion, the present study demonstrated that excessive weight gain during pregnancy is associated with an adverse effect on early stages of subclinical atherosclerosis, placental vascular circulation and neonatal complications. The precise mechanism for these vascular changes, as well as the overall clinical impact of weight control during pregnancy on IMT, placental vascular circulation as well as pregnancy outcomes, deserves further investigation.

Keywords: obesity, pregnancy, complications, weight gain

Procedia PDF Downloads 31