Search results for: transient hyperglycaemia
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 533

Search results for: transient hyperglycaemia

323 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 243
322 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant

Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun

Abstract:

The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.

Keywords: nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation

Procedia PDF Downloads 322
321 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)

Authors: N. Massoum, B. Bouazza

Abstract:

In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software

Procedia PDF Downloads 482
320 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih

Abstract:

Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.

Keywords: TRACE, safety analysis, BWR/6, severe accident

Procedia PDF Downloads 675
319 Preservation of Endocrine Function after Central Pancreatectomy without Anastomoses for a Mid Gland Pancreatic Insulinoma: A Case Report

Authors: Karthikeyan M., Paul M. J.

Abstract:

This abstract describes a case of central pancreatectomy (CP) for a 50-year-old woman with a neuroendocrine tumor in the mid-body of the pancreas. CP, a parenchyma-sparing surgical option, preserves the distal pancreas and spleen, reducing the risk of pancreatic endocrine and exocrine insufficiency compared to traditional resections. The patient, initially misdiagnosed with transient ischemic attack, presented with hypoglycemic symptoms and was found to have a pancreatic lesion. Post-operative results were positive, with a reduction in pancreatic drain volume and normalization of blood sugar levels. This case highlights CP's efficacy in treating centrally located pancreatic lesions while maintaining pancreatic function.

Keywords: central pancreatectomy without anastomosis, no endocrine deficiency on follow-op, less post-op hospital stay, less post-op complications

Procedia PDF Downloads 20
318 Three-Dimensional Numerical Model of an Earth Air Heat Exchanger under a Constrained Urban Environment in India: Modeling and Validation

Authors: V. Rangarajan, Priyanka Kaushal

Abstract:

This study investigates the effectiveness of a typical Earth Air Heat Exchanger (EATHE) for energy efficient space cooling in an urban environment typified by space and soil-related constraints that preclude an optimal design. It involves the development of a three-dimensional numerical transient model that is validated by measurements at a live site in India. It is found that the model accurately predicts the soil temperatures at various depths as well as the EATHE outlet air temperature. The study shows that such an EATHE, even when designed under constraints, does provide effective space cooling especially during the hot months of the year.

Keywords: earth air heat exchanger (EATHE), India, MATLAB, model, simulation

Procedia PDF Downloads 297
317 A Rare Case of Prolonged Pressure Rise Following Selective Laser Trabeculoplasty

Authors: Aneesha Fonseca, Arij Daas, Muhammed Abdulkader

Abstract:

Transient intraocular pressure (IOP) rise is a common occurrence after glaucoma laser procedures. However, this pressure spike usually lasts only a few days. We describe a case of a 60-year-old Caucasian gentleman who underwent selective laser trabeculoplasty (SLT) in both eyes for ocular hypertension previously treated with Bimatoprost and Timolol and developed a sustained raised IOP. His IOP rose from 34 and 33 mmHg pre-laser to 48 and 42 mmHg after SLT in the right and left eye, respectively. Even after maximum medical therapy (Bimatoprost, Timolol, Brinzolamide Apraclonidine, and oral Acetozolamide), his IOP remained at 32 and 28mmHg. A provisional diagnosis of trabeculitis was made, and topical Ketorolac was commenced in addition to the IOP-lowering medications. Within a week, his IOP came down to 21 and 18mmHg in the right and left eye, respectively.

Keywords: complications, selective laser trabeculoplasty, sustained pressure rise, trabeculitis

Procedia PDF Downloads 68
316 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System

Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati

Abstract:

In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.

Keywords: superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols Tuning

Procedia PDF Downloads 308
315 The Analysis of TRACE/PARCS in the Simulation of Ultimate Response Guideline for Lungmen ABWR

Authors: J. R. Wang, W. Y. Li, H. T. Lin, B. H. Lee, C. Shih, S. W. Chen

Abstract:

In this research, the TRACE/PARCS model of Lungmen ABWR has been developed for verification of ultimate response guideline (URG) efficiency. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. The simulation initial condition is 100% rated power/100% rated core flow. This research focuses on the estimation of the time when the fuel might be damaged with no water injection by using TRACE/PARCS first. Then, the effect of the reactor core isolation system (RCIC), control depressurization and ac-independent water addition system (ACIWA), which can provide the injection with 950 gpm are also estimated for the station blackout (SBO) transient.

Keywords: ABWR, TRACE, safety analysis, PARCS

Procedia PDF Downloads 434
314 Failure Pressure Prediction of a Corroded Pipeline Using a Finite Element Method

Authors: Lounes Aouane, Omar Bouledroua

Abstract:

Sonatrach uses 24,000 kilometers of pipelines to transport gas and oil. Over time, these pipes run the risk of bursting due to corrosion inside and/or outside the pipeline. For this reason, a check must be made with the help of an equipped scraper. This intelligent tool provides a detailed picture of all errors in the pipeline. Based on the ERF values, these wear defects are divided into two parts: acceptable defect and unacceptable defect. The objective of this work is to conduct a comparative study of the different methods of calculating the marginal pressure found in the literature (DNV RP F-101, SHELL, P-CORRC, NETTO and CSA Z662). This comparison will be made from a database of 329 burst tests published in the literature. Finally, we will propose a new approach based on the finite element method using the commercial software ANSYS.

Keywords: hydrogen embrittlement, pipelines, hydrogen, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 39
313 Numerical Analysis of Water Hammer in a Viscoelastic Pipe System Considering Fluid Structure Interaction

Authors: N. Tavakoli Shirazi

Abstract:

This study investigates the effects of pipe-wall viscoelasticity on water hammer pressures. Tests have been conducted in a reservoir-pipe-valve system configured of a main viscoelastic pipeline and two short steel pipes placed upstream and downstream of the main pipe. Rapid closure of a manually operated valve at the downstream end generates water hammer. Experimental measurements at several positions along the pipeline have been collected from the papers. Computer simulations of the experiment have been performed and the results of runs with various options affecting the water hammer are provided and discussed. It is shown that the incorporation of viscoelastic pipe wall mechanical behavior in the hydraulic transient model contributes to a favorable fitting between numerical results and observed data.

Keywords: pipe system, PVC pipe, viscoelasticity, water hammer

Procedia PDF Downloads 436
312 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and, etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system

Procedia PDF Downloads 443
311 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data

Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau

Abstract:

Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.

Keywords: calcium imaging, computer vision, neural activity, neural networks

Procedia PDF Downloads 56
310 Impaired Transient Receptor Potential Vanilloid 4-Mediated Dilation of Mesenteric Arteries in Spontaneously Hypertensive Rats

Authors: Ammar Boudaka, Maryam Al-Suleimani, Hajar BaOmar, Intisar Al-Lawati, Fahad Zadjali

Abstract:

Background: Hypertension is increasingly becoming a matter of medical and public health importance. The maintenance of normal blood pressure requires a balance between cardiac output and total peripheral resistance. The endothelium, through the release of vasodilating factors, plays an important role in the control of total peripheral resistance and hence blood pressure homeostasis. Transient Receptor Potential Vanilloid type 4 (TRPV4) is a mechanosensitive non-selective cation channel that is expressed on the endothelium and contributes to endothelium-mediated vasodilation. So far, no data are available about the morphological and functional status of this channel in hypertensive cases. Objectives: This study aimed to investigate whether there is any difference in the morphological and functional features of TRPV4 in the mesenteric artery of normotensive and hypertensive rats. Methods: Functional feature of TRPV4 in four experimental animal groups: young and adult Wistar-Kyoto rats (WKY-Y and WKY-A), young and adult spontaneously hypertensive rats (SHR-Y and SHR-A), was studied by adding 5 µM 4αPDD (TRPV4 agonist) to mesenteric arteries mounted in a four-chamber wire myograph and pre-contracted with 4 µM phenylephrine. The 4αPDD-induced response was investigated in the presence and absence of 1 µM HC067047 (TRPV4 antagonist), 100 µM L-NAME (nitric oxide synthase inhibitor), and endothelium. The morphological distribution of TRPV4 in the wall of rat mesenteric arteries was investigated by immunostaining. Real-time PCR was used in order to investigate mRNA expression level of TRPV4 in the mesenteric arteries of the four groups. The collected data were expressed as mean ± S.E.M. with n equal to the number of animals used (one vessel was taken from each rat). To determine the level of significance, statistical comparisons were performed using the student’s t-test and considered to be significantly different at p<0.05. Results: 4αPDD induced a relaxation response in the mesenteric arterial preparations (WKY-Y: 85.98% ± 4.18; n = 5) that was markedly inhibited by HC067047 (18.30% ± 2.86; n= 5; p<0.05), endothelium removal (19.93% ± 1.50; n = 5; p<0.05) and L-NAME (28.18% ± 3.09; n = 5; p<0.05). The 4αPDD-induced relaxation was significantly lower in SHR-Y compared to WKY-Y (SHR-Y: 70.96% ± 3.65; n = 6, WKY-Y: 85.98% ± 4.18; n = 5-6, p<0.05. Moreover, the 4αPDD-induced response was significantly lower in WKY-A than WKY-Y (WKY-A: 75.58 ± 1.30; n = 5, WKY-Y: 85.98% ± 4.18; n = 5, p<0.05). Immunostaining study showed immunofluorescent signal confined to the endothelial layer of the mesenteric arteries. The expression of TRPV4 mRNA in SHR-Y was significantly lower than in WKY-Y (SHR-Y; 0.67RU ± 0.34; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Furthermore, TRPV4 mRNA expression in WKY-A was lower than its expression in WKY-Y (WKY-A: 0.62RU ± 0.37; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Conclusion: Stimulation of TRPV4, which is expressed on the endothelium of rat mesenteric artery, triggers an endothelium-mediated relaxation response that markedly decreases with hypertension and growing up changes due to downregulation of TRPV4 expression.

Keywords: hypertension, endothelium, mesenteric artery, TRPV4

Procedia PDF Downloads 282
309 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

Abstract:

A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. Matlab codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results are found to be in good agreement.

Keywords: finite difference method, salt-gradient solar-pond, solar energy, transient heat and mass transfer

Procedia PDF Downloads 340
308 Parameter Estimation of Induction Motors by PSO Algorithm

Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad

Abstract:

After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.

Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method

Procedia PDF Downloads 603
307 2D Monte Carlo Simulation of Grain Growth under Transient Conditions

Authors: K. R. Phaneesh, Anirudh Bhat, G. Mukherjee, K. T. Kashyap

Abstract:

Extensive Monte Carlo Potts model simulations were performed on 2D square lattice to investigate the effects of simulated higher temperatures effects on grain growth kinetics. A range of simulation temperatures (KTs) were applied on a matrix of size 10002 with Q-state 64, dispersed with a wide range of second phase particles, ranging from 0.001 to 0.1, and then run to 100,000 Monte Carlo steps. The average grain size, the largest grain size and the grain growth exponent were evaluated for all particle fractions and simulated temperatures. After evaluating several growth parameters, the critical temperature for a square lattice, with eight nearest neighbors, was found to be KTs = 0.4.

Keywords: average grain size, critical temperature, grain growth exponent, Monte Carlo steps

Procedia PDF Downloads 496
306 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method

Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.

Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image

Procedia PDF Downloads 276
305 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 487
304 Application of a SubIval Numerical Solver for Fractional Circuits

Authors: Marcin Sowa

Abstract:

The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.

Keywords: numerical method, SubIval, fractional calculus, numerical solver, circuit analysis

Procedia PDF Downloads 177
303 PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device

Authors: Jyh J. Chen, Fu H. Yang, Ming H. Liao

Abstract:

This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: polymerase chain reaction, thermal cycles, capillary, TE cooler

Procedia PDF Downloads 421
302 Operative Technique of Glenoid Anteversion Osteotomy and Soft Tissue Rebalancing for Brachial Plexus Birth Palsy

Authors: Michael Zaidman, Naum Simanovsky

Abstract:

The most of brachial birth palsies are transient. Children with incomplete recovery almost always develop an internal rotation and adduction contracture. The muscle imbalance around the shoulder results in glenohumeral joint deformity and functional limitations. Natural history of glenohumeral deformity is it’s progression with worsening of function. Anteversion glenoid osteotomy with latissimus dorsi and teres major tendon transfers could be an alternative procedure of proximal humeral external rotation osteotomy for patients with severe glenohumeral dysplasia secondary to brachial plexus birth palsy. We will discuss pre-operative planning and stepped operative technique of the procedure on clinical example.

Keywords: obstetric brachial plexus palsy, glenoid anteversion osteotomy, tendon transfer, operative technique

Procedia PDF Downloads 34
301 Remembering and Forgetting in Shakespeare Sonnets

Authors: Nasreddin Bushra Ahmed

Abstract:

Humans use language to externalize their mental perceptions and conceptions and thereby set up an interdependent consciousness about the concrete and abstract spheres of their existence. Language also represents a recording device whereby they capture the transient moment in their lives. Literature with it its various manifestations help keep the individual and collective memories alive. Works of the English literature’s prototypical figure, William Shakespeare provides the best illustration of this fact. Shakespeare’s sonnets abound in prescient insights about the intricacies of human relations. Though they have been the concern of scholars’ investigations for centuries, many of their thematic potentialities are yet to be tapped. The present study aspires to highlight the theme of remembering and forgetting in some of these sonnets as reverse faces of the same coin. Using close reading it is intended to demonstrate how Shakespeare, through imagery and literary tropes, plays with the issues of mortality and immortality, and how he has reaffirmed that literature can provide a locus for perennial presence despite the temporariness of individuals’ existence.

Keywords: forgetting, immortality, literature, remembering, Shakespeare, sonnet

Procedia PDF Downloads 336
300 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency

Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko

Abstract:

Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.

Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching

Procedia PDF Downloads 105
299 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance

Procedia PDF Downloads 235
298 Study on Impact of Road Loads on Full Vehicle Squeak and Rattle Performance

Authors: R. Praveen, B. R. Chandan Ravi, M. Harikrishna

Abstract:

Squeak and rattle noises are the most annoying transient vehicle noises produced due to different terrain conditions. Interpretation and prohibition of squeak and rattle noises are the dominant aspects of a vehicle refinement. This paper describes the computer-aided engineering (CAE) approach to evaluating the full vehicle squeak and rattle performance with the measured road surface profile as enforced excitation at the tire patch points. The E-Line methodology has been used to predict the relative displacement at the interface points and the risk areas were identified. Squeak and rattle performance has been evaluated at different speeds and at different road conditions to understand the vehicle characteristics. The competence of the process in predicting the risk and root cause of the problems showcased us a pleasing conformity between the physical testing and CAE simulation results.

Keywords: e-line, enforced excitation, full vehicle, squeak and rattle, road excitation

Procedia PDF Downloads 117
297 Three Dimensional Analysis of Cubesat Thermal Vacuum Test

Authors: Maged Assem Soliman Mossallam

Abstract:

Thermal vacuum testing target is to qualify the space system and ensure its operability under harsh space environment. The functionality of the cubesat was checked at extreme orbit conditions. Test was performed for operational and nonoperational modes. Analysis is done to simulate the cubesat thermal cycling inside thermal vacuum chamber. Comsol Multiphysics finite element is used to solve three dimensional problem for the cubesat inside TVAC. Three dimensional CAD model is done using Autodesk Inventor program. The boundary conditions were applied from the actual shroud temperature. The input heat load variation with time is considered to solve the transient three dimensional problem. Results show that the simulated temperature profiles are within an acceptable range from the real testing data.

Keywords: cubesat, thermal vacuum test, testing simulation, finite element analysis

Procedia PDF Downloads 110
296 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 358
295 Role of Platelet Volume Indices in Diabetes Related Vascular Angiopathies

Authors: Mitakshara Sharma, S. K. Nema, Sanjeev Narang

Abstract:

Diabetes mellitus (DM) is a group of metabolic disorders characterized by metabolic abnormalities, chronic hyperglycaemia and long term macrovascular & microvascular complications. Vascular complications are due to platelet hyperactivity and dysfunction, increased inflammation, altered coagulation and endothelial dysfunction. Large proportion of patients with Type II DM suffers from preventable vascular angiopathies, and there is need to develop risk factor modifications and interventions to reduce impact of complications. These complications are attributed to platelet activation, recognised by increase in Platelet Volume Indices (PVI) including Mean Platelet Volume (MPV) and Platelet Distribution Width (PDW). The current study is prospective analytical study conducted over 2 years. Out of 1100 individuals, 930 individuals fulfilled inclusion criteria and were segregated into three groups on basis of glycosylated haemoglobin (HbA1C): - (a) Diabetic, (b) Non-Diabetic and (c) Subjects with Impaired fasting glucose (IFG) with 300 individuals in IFG and non-diabetic groups & 330 individuals in diabetic group. Further, diabetic group was divided into two groups on the basis of presence or absence of known diabetes related vascular complications. Samples for HbA1c and PVI were collected using Ethylene diamine tetraacetic acid (EDTA) as anticoagulant and processed on SYSMEX-X-800i autoanalyser. The study revealed gradual increase in PVI from non-diabetics to IFG to diabetics. PVI were markedly increased in diabetic patients. MPV and PDW of diabetics, IFG and non diabetics were (17.60 ± 2.04)fl, (11.76 ± 0.73)fl, (9.93 ± 0.64)fl and (19.17 ± 1.48)fl, (15.49 ± 0.67)fl, (10.59 ± 0.67)fl respectively with a significant p value 0.00 and a significant positive correlation (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). MPV & PDW of subjects with diabetes related complications were higher as compared to those without them and were (17.51±0.39)fl & (15.14 ± 1.04)fl and (20.09 ± 0.98) fl & (18.96 ± 0.83)fl respectively with a significant p value 0.00. There was a significant positive correlation between PVI and duration of diabetes across the groups (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). However, a significant negative correlation was found between glycaemic levels and total platelet count (PC- HbA1c r =-0.164). This is multi-parameter and comprehensive study with an adequately powered study design. It can be concluded from our study that PVI are extremely useful and important indicators of impending vascular complications in all patients with deranged glycaemic control. Introduction of automated cell counters has facilitated the availability of PVI as routine parameters. PVI is a useful means for identifying larger & active platelets which play important role in development of micro and macro angiopathic complications of diabetes leading to mortality and morbidity. PVI can be used as cost effective markers to predict and prevent impending vascular events in patients with Diabetes mellitus especially in developing countries like India. PVI, if incorporated into protocols for management of diabetes, could revolutionize care and curtail the ever increasing cost of patient management.

Keywords: diabetes, IFG, HbA1C, MPV, PDW, PVI

Procedia PDF Downloads 228
294 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics

Authors: M. Jathaveda, Joben Leons, G. Vidya

Abstract:

Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.

Keywords: stability, typical reentry body, subsonic, static and dynamic

Procedia PDF Downloads 77