Search results for: traffic data
25792 Relationship between Driving under the Influence and Traffic Safety
Authors: Eun Hak Lee, Young-Hyun Seo, Hosuk Shin, Seung-Young Kho
Abstract:
Among traffic crashes, driving under the influence (DUI) of alcohol is the most dangerous behavior in Seoul, South Korea. In 2016 alone 40 deaths occurred on of 2,857 cases of DUI. Since DUI is one of the major factors in increasing the severity of crashes, the intensive management of DUI required to reduce traffic crash deaths and the crash damages. This study aims to investigate the relationship between DUI and traffic safety in order to establish countermeasures for traffic safety improvement. The analysis was conducted on the habitual drivers who drove under the influence. Information of habitual drivers is matched to crash data and fine data. The descriptive statistics on data used in this study, which consists of driver license acquisition, traffic fine, and crash data provided by the Korean National Police Agency, are described. The drivers under the influence are classified by statistically significant criteria, such as driver’s age, license type, driving experience, and crash reasons. With the results of the analysis, we propose some countermeasures to enhance traffic safety.Keywords: driving under influence, traffic safety, traffic crash, traffic fine
Procedia PDF Downloads 22225791 Perception of Risk toward Traffic Violence among Road Users in Makassar, Indonesia
Authors: Sulasmi Sudirman, Rachmadanty Mujah Hartika
Abstract:
Traffic violence is currently a big issue in Indonesia. However, the road users perceived risk that is caused by traffic violence is low. The lack of safety driving awareness is one of the factors that road users committed to traffic violence. There are several lists of common traffic violence in Indonesia such as lack of physical fitness, not wearing helmet, unfasten seatbelt, breaking through the traffic light, not holding a driving license, and some more violence. This research sought to explore the perception of road users toward traffic violence. The participants were road users in Makassar, Indonesia who were using cars and motorbikes. The method of the research was a qualitative approach by using a personal interview to collect data. The research showed that there three main ideas of perceiving traffic violence which are motives, environment that supported traffic violence, and reinforcement. The road users committed traffic violence had particular motive, for example, rushing. The road users committed to traffic violence when other road users and significant other did the same. The road users committed traffic violence when the police were not there to give a ticket. It can be concluded that the perception of road users toward traffic violence determined by internal aspect, the social aspect, and regulation.Keywords: perception, road users, traffic, violence
Procedia PDF Downloads 22225790 Intelligent Ambulance with Advance Features of Traffic Management and Telecommunication
Authors: Mamatha M. N.
Abstract:
Traffic problems, congested traffic, and flow management were recognized as major problems mostly in all the areas, which have caused a problem for the ambulance which carries the emergency patient. The proposed paper aims in the development of ambulance which reaches the nearby hospital faster even in heavy traffic scenario. This process is activated by implementing hardware in an ambulance as well as in traffic post thus allowing a smooth flow to the ambulance to reach the hospital in time. 1) The design of the vehicle to have a communication between ambulance and traffic post. 2)Electronic Health Record with Data-acquisition system 3)Telemetry of acquired biological parameters to the nearest hospital. Thus interfacing all these three different modules and integrating them on the ambulance could reach the hospital earlier than the present ambulance. The system is accurate and efficient of 99.8%.Keywords: bio-telemetry, data acquisition, patient database, automatic traffic control
Procedia PDF Downloads 31525789 Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman
Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon
Abstract:
The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates.Keywords: road safety, rural roads, traffic crash, GIS tools
Procedia PDF Downloads 14925788 The Effect of User Comments on Traffic Application Usage
Authors: I. Gokasar, G. Bakioglu
Abstract:
With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.Keywords: traffic app, real–time information, traffic congestion, regression analysis, dummy variables
Procedia PDF Downloads 42925787 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 36325786 Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics
Authors: Sathish Kumar Jayaraj
Abstract:
The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem.Keywords: traffic flow factor (TFF), urban traffic dynamics, fluid dynamics principles, vehicle shearing resistance (VSR), traffic congestion management, sustainable urban mobility
Procedia PDF Downloads 6225785 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 46725784 Sourcing and Compiling a Maltese Traffic Dataset MalTra
Authors: Gabriele Borg, Alexei De Bono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns
Procedia PDF Downloads 10925783 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods
Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana
Abstract:
Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management
Procedia PDF Downloads 19325782 GIS for Simulating Air Traffic by Applying Different Multi-radar Positioning Techniques
Authors: Amara Rafik, Bougherara Maamar, Belhadj Aissa Mostefa
Abstract:
Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.Keywords: ATM, GIS, radar data, air traffic simulation
Procedia PDF Downloads 8525781 Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods
Authors: Muhammad Faizan Rehman Qureshi, Ahmed Al-Kaisy
Abstract:
Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic.Keywords: traffic loads, heavy vehicles, truck traffic, adjustment factors, traffic data collection
Procedia PDF Downloads 2325780 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 17325779 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 6725778 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 1425777 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 46025776 Form of Distribution of Traffic Accident and Environment Factors of Road Affecting of Traffic Accident in Dusit District, Only Area Responsible of Samsen Police Station
Authors: Musthaya Patchanee
Abstract:
This research aimed to study form of traffic distribution and environmental factors of road that affect traffic accidents in Dusit District, only areas responsible of Samsen Police Station. Data used in this analysis is the secondary data of traffic accident case from year 2011. Observed area units are 15 traffic lines that are under responsible of Samsen Police Station. Technique and method used are the Cartographic Method, the Correlation Analysis, and the Multiple Regression Analysis. The results of form of traffic accidents show that, the Samsen Road area had most traffic accidents (24.29%), second was Rachvithi Road (18.10%), third was Sukhothai Road (15.71%), fourth was Rachasrima Road (12.38%), and fifth was Amnuaysongkram Road (7.62%). The result from Dusit District, only areas responsible of Samsen police station, has suggested that the scale of accidents have high positive correlation with statistic significant at level 0.05 and the frequency of travel (r=0.857). Traffic intersection point (r=0.763)and traffic control equipments (r=0.713) are relevant factors respectively. By using the Multiple Regression Analysis, travel frequency is the only one that has considerable influences on traffic accidents in Dusit district only Samsen Police Station area. Also, a factor in frequency of travel can explain the change in traffic accidents scale to 73.40 (R2 = 0.734). By using the Multiple regression summation from analysis was Y ̂=-7.977+0.044X6.Keywords: form of traffic distribution, environmental factors of road, traffic accidents, Dusit district
Procedia PDF Downloads 39125775 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 13025774 A Study of Traffic Assignment Algorithms
Authors: Abdelfetah Laouzai, Rachid Ouafi
Abstract:
In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.Keywords: network traffic, travel decisions, approaches, traffic assignment, flows
Procedia PDF Downloads 47425773 Implementation of Traffic Engineering Using MPLS Technology
Authors: Vishal H. Shukla, Sanjay B. Deshmukh
Abstract:
Traffic engineering, at its center, is the ability of moving traffic approximately so that traffic from a congested link is moved onto the unused capacity on another link. Traffic Engineering ensures the best possible use of the resources. Now to support traffic engineering in the today’s network, Multiprotocol Label Switching (MPLS) is being used which is very helpful for reliable packets delivery in an ongoing internet services. Here a topology is been implemented on GNS3 to focus on the analysis of the communication take place from one site to other through the ISP. The comparison is made between the IP network & MPLS network based on Bandwidth & Jitter which are one of the performance parameters using JPERF simulator.Keywords: GNS3, JPERF, MPLS, traffic engineering, VMware
Procedia PDF Downloads 48725772 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.Keywords: speed, Kriging, arterial, traffic volume
Procedia PDF Downloads 35325771 Mapping of Traffic Noise in Riyadh City-Saudi Arabia
Authors: Khaled A. Alsaif, Mosaad A. Foda
Abstract:
The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways.Keywords: noise pollution, road traffic noise, LimA predictor, GPS
Procedia PDF Downloads 38425770 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 725769 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2625768 Reactive Analysis of Different Protocol in Mobile Ad Hoc Network
Authors: Manoj Kumar
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper, we compare AODV, DSDV, DSR, and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyze these routing protocols by extensive simulations in OPNET simulator and show how to pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, sent data traffic, throughput, retransmission attempts.Keywords: AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 51825767 Proposed Alternative System for Existing Traffic Signal System
Authors: Alluri Swaroopa, L. V. N. Prasad
Abstract:
Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.Keywords: bridges, junctions, ramps, urban traffic control
Procedia PDF Downloads 55325766 Speed Characteristics of Mixed Traffic Flow on Urban Arterials
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.Keywords: normal distribution, percentile speed, speed spread ratio, traffic volume
Procedia PDF Downloads 42225765 Geographic Information System for Simulating Air Traffic By Applying Different Multi-Radar Positioning Techniques
Authors: Amara Rafik, Mostefa Belhadj Aissa
Abstract:
Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.Keywords: ATM, GIS, radar data, simulation
Procedia PDF Downloads 11825764 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 41725763 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 225