Search results for: thermal storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5179

Search results for: thermal storage

5059 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar

Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex

Abstract:

Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.

Keywords: mortar, sawdust waste, thermal, experimental, analysis

Procedia PDF Downloads 60
5058 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 388
5057 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 347
5056 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 390
5055 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 225
5054 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour

Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche

Abstract:

In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.

Keywords: biopolymers, composites, mechanical properties, poly(lactic acid)

Procedia PDF Downloads 202
5053 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 113
5052 Effects of Storage Methods on Proximate Compositions of African Yam Bean (Sphenostylis stenocarpa) Seeds

Authors: Iyabode A. Kehinde, Temitope A. Oyedele, Clement G. Afolabi

Abstract:

One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on the nutritive composition of AYB seeds stored in three types of storage materials viz; Jute bags, Polypropylene bags, and Plastic Bowls. Freshly harvested seeds of AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the storeroom was recorded monthly with Kestrel pocket weather tracker 4000. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. The temperature of the storeroom decreased from 32.9ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by the increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that of the three storage materials jute bag was more effective at preserving AYB seeds.

Keywords: storage methods, proximate composition, African Yam Bean, fungi

Procedia PDF Downloads 103
5051 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage

Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani

Abstract:

Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.

Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis

Procedia PDF Downloads 55
5050 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 354
5049 Hazardous Effects of Metal Ions on the Thermal Stability of Hydroxylammonium Nitrate

Authors: Shweta Hoyani, Charlie Oommen

Abstract:

HAN-based liquid propellants are perceived as potential substitute for hydrazine in space propulsion. Storage stability for long service life in orbit is one of the key concerns for HAN-based monopropellants because of its reactivity with metallic and non-metallic impurities which could entrain from the surface of fuel tanks and the tubes. The end result of this reactivity directly affects the handling, performance and storability of the liquid propellant. Gaseous products resulting from the decomposition of the propellant can lead to deleterious pressure build up in storage vessels. The partial loss of an energetic component can change the ignition and the combustion behavior and alter the performance of the thruster. The effect of largely plausible metals- iron, copper, chromium, nickel, manganese, molybdenum, zinc, titanium and cadmium on the thermal decomposition mechanism of HAN has been investigated in this context. Studies involving different concentrations of metal ions and HAN at different preheat temperatures have been carried out. Effect of metal ions on the decomposition behavior of HAN has been studied earlier in the context of use of HAN as gun propellant. However the current investigation pertains to the decomposition mechanism of HAN in the context of use of HAN as monopropellant for space propulsion. Decomposition onset temperature, rate of weight loss, heat of reaction were studied using DTA- TGA and total pressure rise and rate of pressure rise during decomposition were evaluated using an in-house built constant volume batch reactor. Besides, reaction mechanism and product profile were studied using TGA-FTIR setup. Iron and copper displayed the maximum reaction. Initial results indicate that iron and copper shows sensitizing effect at concentrations as low as 50 ppm with 60% HAN solution at 80°C. On the other hand 50 ppm zinc does not display any effect on the thermal decomposition of even 90% HAN solution at 80°C.

Keywords: hydroxylammonium nitrate, monopropellant, reaction mechanism, thermal stability

Procedia PDF Downloads 395
5048 Thermal Network Model for a Large Scale AC Induction Motor

Authors: Sushil Kumar, M. Dakshina Murty

Abstract:

Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine.

Keywords: AC motor, thermal network, heat transfer, modelling

Procedia PDF Downloads 294
5047 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions

Procedia PDF Downloads 333
5046 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in this world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and Matlab Simulink of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on the thermal and electrical efficiency.

Keywords: renewable energy, hybrid PV/T system, sensitivity analysis, ecological sciences

Procedia PDF Downloads 263
5045 Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC.

Keywords: magnesium oxychloride cement (MOC), phototharmal deflection technique, thermal properties, Ddensity

Procedia PDF Downloads 318
5044 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy

Authors: G. Kaur, A. P. Kulkarni, S. Giddey

Abstract:

Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.

Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy

Procedia PDF Downloads 205
5043 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 217
5042 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 151
5041 Peak Shaving in Microgrids Using Hybrid Storage

Authors: Juraj Londák, Radoslav Vargic, Pavol Podhradský

Abstract:

In this contribution, we focus on the technical and economic aspects of using hybrid storage in microgrids for peak shaving. We perform a feasibility analysis of hybrid storage consisting of conventional supercapacitors and chemical batteries. We use multiple real-life consumption profiles from various industry-oriented microgrids. The primary purpose is to construct a digital twin model for reserved capacity simulation and prediction. The main objective is to find the equilibrium between technical innovations, acquisition costs and energy cost savings

Keywords: microgrid, peak shaving, energy storage, digital twin

Procedia PDF Downloads 129
5040 Optimal Scheduling for Energy Storage System Considering Reliability Constraints

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.

Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints

Procedia PDF Downloads 375
5039 A Refrigerated Condition for the Storage of Glucose Test Strips at Health Promoting Hospitals: An Implication for Hospitals with Limited Air Conditioners

Authors: Wanutchaya Duanginta, Napaporn Apiratmateekul, Tippawan Sangkaew, Sunaree Wekinhirun, Kunchit Kongros, Wanvisa Treebuphachatsakul

Abstract:

Thailand has a tropical climate with an average outdoor ambient air temperature of over 30°C, which can exceed manufacturer recommendations for the storage of glucose test strips. This study monitored temperature and humidity at actual sites of five sub-district health promoting hospitals (HPH) in Phitsanulok Province for the storage of glucose test strips in refrigerated conditions. Five calibrated data loggers were placed at the actual sites for glucose test strip storage at five HPHs for 8 weeks between April and June. For the stress test, two lot numbers of glucose test strips, each with two glucose meters, were kept in a plastic box with desiccants and placed in a refrigerator with the temperature calibrated to 4°C and at room temperature (RT). Temperature and humidity in the refrigerator and at RT were measured every hour for 30 days. The mean temperature for storing test strips at the five HPHs ranged from 29°C to 33°C, and three of the five HPHs (60%) had a mean temperature above 30°C. The refrigerator temperatures were 3.8 ± 2.0°C (2.0°C to 6.5°C), and relative humidity was 51 ± 2% (42 to 54%). The maximum of blood glucose testing by glucose meters when the test strips were stored in a refrigerator were not significantly different (p > 0.05) from unstressed test strips for both glucose meters using amperometry-GDH-PQQ and amperometry-GDH-FAD principles. Opening the test strip vial daily resulted in higher variation than when refrigerated after a single-use. However, the variations were still within an acceptable range. This study concludes that glucose tested strips can be stored in plastic boxes in a refrigerator if it is well-controlled for temperature and humidity. Storage of glucose-tested strips in the refrigerator during hot and humid weather may be useful for HPHs with limited air conditioners.

Keywords: environmental stressed test, thermal stressed test, quality control, point-of-care testing

Procedia PDF Downloads 168
5038 Development of Water-Based Thermal Insulation Paints Using Silica Aerogel

Authors: Lu Yanru, Handojo Djati Utomo, Yin Xi Jiang, Li Xiaodong

Abstract:

Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building.

Keywords: silica aerogel, thermal insulation, water-based paints, water resistant

Procedia PDF Downloads 139
5037 Effects of Aging on Thermal Properties of Some Improved Varieties of Cassava (Manihot Esculenta) Roots

Authors: K. O. Oriola, A. O. Raji, O. E. Akintola, O. T. Ismail

Abstract:

Thermal properties of roots of three improved cassava varieties (TME419, TMS 30572, and TMS 0326) were determined on samples harvested at 12, 15 and 18 Months After Planting (MAP) conditioned to moisture contents of 50, 55, 60, 65, 70% (wb). Thermal conductivity at 12, 15 and 18 MAP ranged 0.4770 W/m.K to 0.6052W/m.K; 0.4804 W/m.K to 0.5530 W/m.K and 0.3764 to 0.6102 W/m.K respectively, thermal diffusivity from 1.588 to 2.426 x 10-7m2/s; 1.290 to 2.010 x 10-7m2/s and 0.1692 to 4.464 x 10-7m2/s and specific heat capacity from 2.3626 to 3.8991 kJ/kg.K; 1.8110 to 3.9703 kJ/kgK and 1.7311 to 3.8830 kJ/kg.K respectively within the range of moisture content studied across the varieties. None of the samples over the ages studied showed similar or definite trend in variation with others across the moisture content. However, second order polynomial models fitted all the data. Age on the other hand had a significant effect on the three thermal properties studied for TME 419 but not on thermal conductivity of TMS30572 and specific heat capacity of TMS 0326. Information obtained will provide better insight into thermal processing of cassava roots into stable products.

Keywords: thermal conductivity, thermal diffusivity, specific heat capacity, moisture content, tuber age

Procedia PDF Downloads 481
5036 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsića, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum

Abstract:

Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: polycaprolactone, titanium dioxide, thermal properties, morphology

Procedia PDF Downloads 335
5035 Hydrogen Storage in Carbonized Coconut Meat (Kernel)

Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava

Abstract:

Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.

Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca

Procedia PDF Downloads 382
5034 Integrated Simulation and Optimization for Carbon Capture and Storage System

Authors: Taekyoon Park, Seokgoo Lee, Sungho Kim, Ung Lee, Jong Min Lee, Chonghun Han

Abstract:

CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.

Keywords: CCS, caron dioxide, carbon capture and storage, simulation, optimization

Procedia PDF Downloads 317
5033 Technologies for Solar Energy Storage and Utilization Using Mixture of Molten Salts and Polymers

Authors: Anteneh Mesfin Yeneneh, Abdul Shakoor, Jimoh Adewole, Safinaz Al Balushi, Sara Al Balushi

Abstract:

The research work focuses on exploring better technologies for solar energy storage. The research has the objective of substituting fossil fuels with renewable solar energy technology. This was the reason that motivated the research team to search for alternatives to develop an eco-friendly desalination process, which fully depends on the solar energy source. The Authors also investigated the potential of using different salt mixtures for better solar energy storage and better pure water productivity. Experiments were conducted to understand the impacts of solar energy collection and storage techniques on heat accumulation, heat storage capacity of various compositions of salt mixtures. Based on the experiments conducted, the economic and technical advantages of the integrated water desalination was assessed. Experiments also showed that the best salts with a higher storage efficiency of heat energy are NaCl, KNO3, and MgCl26H2O and polymers such as Poly Propylene and Poly Ethylene Terephthalate.

Keywords: molten salts, desalination, solar energy storage and utilization, polymers

Procedia PDF Downloads 112
5032 Indoor Thermal Comfort in Educational Buildings in the State of Kuwait

Authors: Sana El-Azzeh, Farraj Al-Ajmi, Abdulrahman Al-Aqqad, Mohamed Salem

Abstract:

Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature.

Keywords: indoor thermal comfort, educational facility, gender analysis, dry desert climate

Procedia PDF Downloads 126
5031 Effects of Packaging Method, Storage Temperature and Storage Time on the Quality Properties of Cold-Dried Beef Slices

Authors: Elif Aykın Dinçer, Mustafa Erbaş

Abstract:

The effects of packaging method (modified atmosphere packaging (MAP) and aerobic packaging (AP)), storage temperature (4 and 25°C) and storage time (0, 15, 30, 45, 60, 75 and 90 days) on the chemical, microbiological and sensory properties of cold-dried beef slices were investigated. Beef slices were dried at 10°C and 3 m/s after pasteurization with hot steam and then packaged in order to determine the effect of different storage conditions. As the storage temperature and time increased, it was determined that the amount of CO2 decreased in the MAP packed samples and that the amount of O2 decreased while the amount of CO2 increased in the AP packed samples. The water activity value of stored beef slices decreased from 0.91 to 0.88 during 90 days of storage. The pH, TBARS and NPN-M values of stored beef slices were higher in the AP packed samples and pH value increased from 5.68 to 5.93, TBARS increased from 25.25 to 60.11 μmol MDA/kg and NPN-M value increased from 4.37 to 6.66 g/100g during the 90 days of storage. It was determined that the microbiological quality of MAP packed samples was higher and the mean counts of TAMB, TPB, Micrococcus/Staphylococcus, LAB and yeast-mold were 4.10, 3.28, 3.46, 2.99 and 3.14 log cfu/g, respectively. As a result of sensory evaluation, it was found that the quality of samples packed MAP and stored at low temperature was higher and the shelf life of samples was 90 days at 4°C and 75 days at 25°C for MAP treatment, and 60 days at 4°C and 45 days at 25°C for AP treatment.

Keywords: cold drying, dried meat, packaging, storage

Procedia PDF Downloads 115
5030 The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission

Authors: Liu Ziyu, Gao Yongfeng, Li Muhua, Zhao Jiahao, Meng Song

Abstract:

The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed.

Keywords: MEMS, thermal shock test, reliability, space environment

Procedia PDF Downloads 555