Search results for: text representation
2462 Arabic Text Classification: Review Study
Authors: M. Hijazi, A. Zeki, A. Ismail
Abstract:
An enormous amount of valuable human knowledge is preserved in documents. The rapid growth in the number of machine-readable documents for public or private access requires the use of automatic text classification. Text classification can be defined as assigning or structuring documents into a defined set of classes known in advance. Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information written in the Arabic language on the web. This paper presents a review on the published researches of Arabic Text Classification using classical data representation, Bag of words (BoW), and using conceptual data representation based on semantic resources such as Arabic WordNet and Wikipedia.Keywords: Arabic text classification, Arabic WordNet, bag of words, conceptual representation, semantic relations
Procedia PDF Downloads 4252461 Arabic Text Representation and Classification Methods: Current State of the Art
Authors: Rami Ayadi, Mohsen Maraoui, Mounir Zrigui
Abstract:
In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC.Keywords: text classification, Arabic, impact of preprocessing, classification algorithms
Procedia PDF Downloads 4682460 Literature Review on Text Comparison Techniques: Analysis of Text Extraction, Main Comparison and Visual Representation Tools
Authors: Andriana Mkrtchyan, Vahe Khlghatyan
Abstract:
The choice of a profession is one of the most important decisions people make throughout their life. With the development of modern science, technologies, and all the spheres existing in the modern world, more and more professions are being arisen that complicate even more the process of choosing. Hence, there is a need for a guiding platform to help people to choose a profession and the right career path based on their interests, skills, and personality. This review aims at analyzing existing methods of comparing PDF format documents and suggests that a 3-stage approach is implemented for the comparison, that is – 1. text extraction from PDF format documents, 2. comparison of the extracted text via NLP algorithms, 3. comparison representation using special shape and color psychology methodology.Keywords: color psychology, data acquisition/extraction, data augmentation, disambiguation, natural language processing, outlier detection, semantic similarity, text-mining, user evaluation, visual search
Procedia PDF Downloads 752459 A Word-to-Vector Formulation for Word Representation
Authors: Sandra Rizkallah, Amir F. Atiya
Abstract:
This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.Keywords: natural language processing, word to vector, text similarity, text mining
Procedia PDF Downloads 2732458 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation
Authors: Mario Kubek, Herwig Unger
Abstract:
Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.Keywords: search algorithm, centroid, query, keyword, co-occurrence, categorisation
Procedia PDF Downloads 2812457 Extraction of Text Subtitles in Multimedia Systems
Authors: Amarjit Singh
Abstract:
In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos.Keywords: video, subtitles, extraction, annotation, frames
Procedia PDF Downloads 6002456 Towards Logical Inference for the Arabic Question-Answering
Authors: Wided Bakari, Patrice Bellot, Omar Trigui, Mahmoud Neji
Abstract:
This article constitutes an opening to think of the modeling and analysis of Arabic texts in the context of a question-answer system. It is a question of exceeding the traditional approaches focused on morphosyntactic approaches. Furthermore, we present a new approach that analyze a text in order to extract correct answers then transform it to logical predicates. In addition, we would like to represent different levels of information within a text to answer a question and choose an answer among several proposed. To do so, we transform both the question and the text into logical forms. Then, we try to recognize all entailment between them. The results of recognizing the entailment are a set of text sentences that can implicate the user’s question. Our work is now concentrated on an implementation step in order to develop a system of question-answering in Arabic using techniques to recognize textual implications. In this context, the extraction of text features (keywords, named entities, and relationships that link them) is actually considered the first step in our process of text modeling. The second one is the use of techniques of textual implication that relies on the notion of inference and logic representation to extract candidate answers. The last step is the extraction and selection of the desired answer.Keywords: NLP, Arabic language, question-answering, recognition text entailment, logic forms
Procedia PDF Downloads 3412455 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 992454 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity
Authors: Vahid Ebrahimipour
Abstract:
Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation
Procedia PDF Downloads 1042453 Urdu Text Extraction Method from Images
Authors: Samabia Tehsin, Sumaira Kausar
Abstract:
Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.Keywords: caption text, content-based image retrieval, document analysis, text extraction
Procedia PDF Downloads 5132452 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 992451 Small Text Extraction from Documents and Chart Images
Authors: Rominkumar Busa, Shahira K. C., Lijiya A.
Abstract:
Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.Keywords: small text extraction, OCR, scene text recognition, CRNN
Procedia PDF Downloads 1242450 Text Data Preprocessing Library: Bilingual Approach
Authors: Kabil Boukhari
Abstract:
In the context of information retrieval, the selection of the most relevant words is a very important step. In fact, the text cleaning allows keeping only the most representative words for a better use. In this paper, we propose a library for the purpose text preprocessing within an implemented application to facilitate this task. This study has two purposes. The first, is to present the related work of the various steps involved in text preprocessing, presenting the segmentation, stemming and lemmatization algorithms that could be efficient in the rest of study. The second, is to implement a developed tool for text preprocessing in French and English. This library accepts unstructured text as input and provides the preprocessed text as output, based on a set of rules and on a base of stop words for both languages. The proposed library has been made on different corpora and gave an interesting result.Keywords: text preprocessing, segmentation, knowledge extraction, normalization, text generation, information retrieval
Procedia PDF Downloads 922449 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining
Procedia PDF Downloads 2172448 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text
Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert
Abstract:
This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies
Procedia PDF Downloads 1672447 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing
Procedia PDF Downloads 1412446 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity
Procedia PDF Downloads 2362445 Programmed Speech to Text Summarization Using Graph-Based Algorithm
Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba
Abstract:
Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculationsKeywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization
Procedia PDF Downloads 2152444 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 822443 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction
Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar
Abstract:
Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation
Procedia PDF Downloads 1422442 Reducing Accidents Using Text Stops
Authors: Benish Chaudhry
Abstract:
Most of the accidents these days are occurring because of the ‘text-and-drive’ concept. If we look at the structure of cities in UAE, there are great distances, because of which it is impossible to drive without using or merely checking the cellphone. Moreover, if we look at the road structure, it is almost impossible to stop at a point and text. With the introduction of TEXT STOPs, drivers will be able to stop different stops for a maximum of 1 and a half-minute in order to reply or write a message. They can be introduced at a distance of 10 minutes of driving on the average speed of the road, so the drivers can look forward to a stop and can reply to a text when needed. A user survey indicates that drivers are willing to NOT text-and-drive if they have such a facility available.Keywords: transport, accidents, urban planning, road planning
Procedia PDF Downloads 3932441 The Representation of J. D. Salinger’s Views on Changes in American Society in the 1940s in The Catcher in the Rye
Authors: Jessadaporn Achariyopas
Abstract:
The objectives of this study aim to analyze both the protagonist in The Catcher in the Rye in terms of ideological concepts and narrative techniques which influence the construction of the representation and the relationship between the representation and J. D. Salinger’s views on changes in American society in the 1940s. This area of study might concern two theories: namely, a theory of representation and narratology. In addition, this research is intended to answer the following three questions. Firstly, how is the production of meaning through language in The Catcher in the Rye constructed? Secondly, what are J. D. Salinger’s views on changes in American society in the 1940s? Lastly, how is the relationship between the representation and J. D. Salinger’s views? The findings showed that the protagonist’s views, J. D. Salinger’s views, and changes in American society in the 1940s are obviously interrelated. The production of meaning which is the representation of the protagonist’s views was constructed of narrative techniques. J. D. Salinger’s views on changes in American society in the 1940s were the same antisocial perspectives as Holden Caulfield’s which are phoniness, alienation and meltdown.Keywords: representation, construction of the representation, systems of representation, phoniness, alienation, meltdown
Procedia PDF Downloads 3202440 Structure Analysis of Text-Image Connection in Jalayrid Period Illustrated Manuscripts
Authors: Mahsa Khani Oushani
Abstract:
Text and image are two important elements in the field of Iranian art, the text component and the image component have always been manifested together. The image narrates the text and the text is the factor in the formation of the image and they are closely related to each other. The connection between text and image is an interactive and two-way connection in the tradition of Iranian manuscript arrangement. The interaction between the narrative description and the image scene is the result of a direct and close connection between the text and the image, which in addition to the decorative aspect, also has a descriptive aspect. In this article the connection between the text element and the image element and its adaptation to the theory of Roland Barthes, the structuralism theorist, in this regard will be discussed. This study tends to investigate the question of how the connection between text and image in illustrated manuscripts of the Jalayrid period is defined according to Barthes’ theory. And what kind of proportion has the artist created in the composition between text and image. Based on the results of reviewing the data of this study, it can be inferred that in the Jalayrid period, the image has a reference connection and although it is of major importance on the page, it also maintains a close connection with the text and is placed in a special proportion. It is not necessarily balanced and symmetrical and sometimes uses imbalance for composition. This research has been done by descriptive-analytical method, which has been done by library collection method.Keywords: structure, text, image, Jalayrid, painter
Procedia PDF Downloads 2322439 Beauty Representation and Body Politic of Women Writers in Magdalene
Authors: Putri Alya Ramadhani
Abstract:
This research analysed how women writers represent their beauty in a platform called Magdalene. With the vision “Supporting diversity, empowering minds,” Magdalene is a new media that seeks to represent women's voices rarely heard in mainstream media. This research elaborates further on how women writers, through their writing, use their body politic to subvert patriarchal values. This research used a qualitative method with an explorative design by using text analysis based on the representation theory of Stuart Hall and in-dept-interview with Women Writers in Magdalene. The result illustrated that women writers represent their beauty in Magdalene to subvert body and beauty-representation in mainstream discourse. Furthermore, the authors have identified an identity negotiation as tension from inevitable oppression and power towards and from women’s bodies. In addition, Women Writers showed the power of their bodies through the redefinition of beauty practices and self. Hence, they subvert body dichotomy to redefine body values in society. In conclusion, this study shows various representations of beauty and body that are underrepresented in the mainstream media through the innovative new medium, Magdalena.Keywords: women writers, beauty-representation, body politic, new media, identity negotiation
Procedia PDF Downloads 1742438 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification
Procedia PDF Downloads 5802437 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 652436 Unlocking the Potential of Short Texts with Semantic Enrichment, Disambiguation Techniques, and Context Fusion
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
This paper explores the potential of short texts through semantic enrichment and disambiguation techniques. By employing context fusion, we aim to enhance the comprehension and utility of concise textual information. The methodologies utilized are grounded in recent advancements in natural language processing, which allow for a deeper understanding of semantics within limited text formats. Specifically, topic classification is employed to understand the context of the sentence and assess the relevance of added expressions. Additionally, word sense disambiguation is used to clarify unclear words, replacing them with more precise terms. The implications of this research extend to various applications, including information retrieval and knowledge representation. Ultimately, this work highlights the importance of refining short text processing techniques to unlock their full potential in real-world applications.Keywords: information traffic, text summarization, word-sense disambiguation, semantic enrichment, ambiguity resolution, short text enhancement, information retrieval, contextual understanding, natural language processing, ambiguity
Procedia PDF Downloads 82435 Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer
Authors: Yufen Qin
Abstract:
Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory.Keywords: language model, natural language processing, prompt, text sentiment transfer
Procedia PDF Downloads 792434 Filling the Gaps with Representation: Netflix’s Anne with an E as a Way to Reveal What the Text Hid
Authors: Arkadiusz Adam Gardaś
Abstract:
In his theory of gaps, Wolfgang Iser states that literary texts often lack direct messages. Instead of using straightforward descriptions, authors leave the gaps or blanks, i.e., the spaces within the text that come into existence only when readers fill them with their understanding and experiences. This paper’s aim is to present Iser’s literary theory in an intersectional way by comparing it to the idea of intersemiotic translation. To be more precise, the author uses the example of Netflix’s adaption of Lucy Maud Montgomery’s Anne of Green Gables as a form of rendering a book into a film in such a way that certain textual gaps are filled with film images. Intersemiotic translation is a rendition in which signs of one kind of media are translated into the signs of the other media. Film adaptions are the most common, but not the only, type of intersemiotic translation. In this case, the role of the translator is taken by a screenwriter. A screenwriter’s role can reach beyond the direct meaning presented by the author, and instead, it can delve into the source material (here – a novel) in a deeper way. When it happens, a screenwriter is able to spot the gaps in the text and fill them with images that can later be presented to the viewers. Anne with an E, the Netflix adaption of Montgomery’s novel, may be used as a highly meaningful example of such a rendition. It is due to the fact that the 2017 series was broadcasted more than a hundred years after the first edition of the novel was published. This means that what the author might not have been able to show in her text can now be presented in a more open way. The screenwriter decided to use this opportunity to represent certain groups in the film, i.e., racial and sexual minorities, and women. Nonetheless, the series does not alter the novel; in fact, it adds to it by filling the blanks with more direct images. In the paper, fragments of the first season of Anne with an E are analysed in comparison to its source, the novel by Montgomery. The main purpose of that is to show how intersemiotic translation connected with the Iser’s literary theory can enrich the understanding of works of art, culture, media, and literature.Keywords: intersemiotic translation, film, literary gaps, representation
Procedia PDF Downloads 3152433 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech
Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori
Abstract:
Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing
Procedia PDF Downloads 131