Search results for: tensile retention
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1867

Search results for: tensile retention

1597 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 260
1596 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 299
1595 Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis

Authors: S. Y. Park, S. M. Lee, S. H. Lee, K. M. Lim

Abstract:

In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature.

Keywords: cooling curve, element, grey cast iron, thermal analysis, rare earth element

Procedia PDF Downloads 329
1594 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature

Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun

Abstract:

CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.

Keywords: NiCoCrAlY coatings, mechanical properties, DBTT, miniature specimen testing

Procedia PDF Downloads 128
1593 Experimental and Theoretical Study of Melt Viscosity in Injection Process

Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu

Abstract:

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

Keywords: injection molding, melt viscosity, tensile test, pressure sensor bushing (PSB)

Procedia PDF Downloads 442
1592 Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis

Procedia PDF Downloads 434
1591 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components

Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar

Abstract:

Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.

Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum

Procedia PDF Downloads 104
1590 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 23
1589 Mechanical Properties of Self-Compacting Concrete with Three-Dimensional Steel Fibres

Authors: Jeffri Ramli, Brabha Nagaratnam, Keerthan Poologanathan, Wai Ming Cheung, Thadshajini Suntharalingham

Abstract:

Fiber-reinforced self-compacting concrete (FRSCC) combines the benefits of SCC of high flowability and randomly dispersed short fibres together in one single concrete. Fibres prevent brittle behaviour and improve several mechanical properties of SCC. In this paper, an experimental investigation of the effect of three-dimensional (3D) fibres on the mechanical properties of SCC has been conducted. Seven SCC mixtures, namely SCC with no fibres as a reference mix, and six 3D steel fibre reinforced SCC mixes were prepared. Two different sizes of 3D steel fibres with perimeters of 115 mm and 220 mm at different fibre contents of 1%, 2%, and 3% (by cement weight) were considered. The mechanical characteristics were obtained through compressive, splitting tensile, and flexural strength tests. The test results revealed that the addition of 3D fibres improves the mechanical properties of SCC.

Keywords: self-compacting concrete, three-dimensional steel fibres, mechanical properties, compressive strength, splitting tensile strength, flexural strength

Procedia PDF Downloads 118
1588 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio

Procedia PDF Downloads 253
1587 Measurements of Physical Properties of Directionally Solidified Al-Si-Cu Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

Al-12.6wt.%Si-2wt.%Cu ternary alloy of near eutectic composition was directionally solidified upward at a constant temperature gradient in a wide range of growth rates (V=8.25-165.41 µm/s). The microstructures (λ), microhardness (HV), tensile stress (σ) and electrical resistivity (ρ) were measured from directionally solidified samples. The dependence of microstructures, microhardness and electrical resistivity on growth rate (V) was also determined by statistical analysis. According to these results, it has been found that for increasing values of V, the values of HV, σ and ρ increase. Variations of electrical resistivity for casting Al-Si-Cu alloy were also measured at the temperature in range 300-500 K. The enthalpy (ΔH) and the specific heat (Cp) for the Al-Si-Cu alloy were determined by differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. The results obtained in this work were compared with the similar experimental results in the literature.

Keywords: Al-Si-Cu alloy, microstructures, micro-hardness, tensile stress electrical resistivity, enthalpy

Procedia PDF Downloads 248
1586 Influence of Building Orientation and Post Processing Materials on Mechanical Properties of 3D-Printed Parts

Authors: Raf E. Ul Shougat, Ezazul Haque Sabuz, G. M. Najmul Quader, Monon Mahboob

Abstract:

Since there are lots of ways for building and post processing of parts or models in 3D printing technology, the main objective of this research is to provide an understanding how mechanical characteristics of 3D printed parts get changed for different building orientations and infiltrates. Tensile, compressive, flexure, and hardness test were performed for the analysis of mechanical properties of those models. Specimens were designed in CAD software, printed on Z-printer 450 with five different build orientations and post processed with four different infiltrates. Results show that with the change of infiltrates or orientations each of the above mechanical property changes and for each infiltrate the highest tensile strength, flexural strength, and hardness are found for such orientation where there is the lowest number of layers while printing.

Keywords: 3D printing, building orientations, infiltrates, mechanical characteristics, number of layers

Procedia PDF Downloads 258
1585 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 256
1584 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.

Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan

Procedia PDF Downloads 380
1583 Effects of CFRP Confinement on PCC and Glass Fiber Reinforced Concrete

Authors: Muhammad Jahangeer Munir, Liaqat Ali Qureshi, Junaid Ahmed

Abstract:

This paper presents the investigation regarding use of glass fibers in structural concrete members and determining the behavior of normal PCC, GFRC and retrofitted GFRC under different tests performed in the laboratory. Effect of retrofitting on the GFRC & PCC was investigated by using three patterns of CFRP wrapping. Properties like compressive, split tensile and flexural strength of normal GFRC and retrofitted GFRC were investigated and compared with their PCC counterparts. It was found that GFRC has more compressive strength as compared to PCC. At lower confinement pressures PCC behaves better than GFRC. Confinement efficiency was lower in GFRC as compared to PCC in terms of Split tensile strength. In case of GFRC all the patterns of wrapped CFRP strips showed more strength than their PCC counterparts.

Keywords: carbon fiber reinforced polymers, confinement, glass fibers, retrofitting

Procedia PDF Downloads 568
1582 Experimental Investigation on the Behavior of Steel Fibers Reinforced Concrete under Impact Loading

Authors: Feng Fu, Ahmad Bazgir

Abstract:

This study aimed to investigate and examine the structural behaviour of steel fibre reinforced concrete slabs when subjected to impact loading using drop weight method. A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. The experimental work consists of testing both conventional reinforced slabs and SFRC slabs. Parameters to be considered for carrying out the test will consist of the volume fraction of steel fibre, type of steel fibres, drop weight height and number of blows. Energy absorption of slabs under impact loading and failure modes were examined in-depth and compared with conventional reinforced concrete slab are investigated.

Keywords: steel fibre reinforce concrete, compressive test, tensile splitting test, impact test

Procedia PDF Downloads 393
1581 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun

Abstract:

In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.

Keywords: fiber treatment, impact modifier, natural fibers, ultrasound

Procedia PDF Downloads 454
1580 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding

Authors: Khalil Aghapouramin

Abstract:

The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces

Keywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior

Procedia PDF Downloads 312
1579 Algae Biomass as Alternatives to Wood Pulp in Handmade Paper Technology

Authors: Piyali Mukherjee, Jai Prakash Keshri

Abstract:

Anticipated shortages of raw materials for paper industry have forged the entry of algae as alternatives to wood pulp. Five algal species: Pithophora sp., Lyngbya sp., Hydrodictyon sp., Cladophora sp. and Rhizoclonium sp. were collected from different parts of Burdwan town, West Bengal, India. Their biomass compositional values were determined with respect to eucalyptus wood pulp. Paper characteristics were studied in terms of breaking length, tensile strength, CI index, pH, brightness, recyclability, and durability. Hydrodictyon sp., besides Rhizoclonium sp. and Cladophora sp. were established as the most suitable candidates for paper pulp formulation in terms of high cellulose, hemicelluloses contents and low lignin and silica contents. Paper from pure Hydrodictyon sp. pulp was found to have statistically significant (p < 0.05) improved breaking-length and tensile strength properties compared to that obtained from Lyngbya sp.

Keywords: algae, biomass, paper, pulp, wood

Procedia PDF Downloads 175
1578 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 534
1577 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers

Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.

Abstract:

The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.

Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism

Procedia PDF Downloads 434
1576 The Impact of Inpatient New Boarding Policy on Emergency Department Overcrowding: A Discrete Event Simulation Study

Authors: Wheyming Tina Song, Chi-Hao Hong

Abstract:

In this study, we investigate the effect of a new boarding policy - short stay, on the overcrowding efficiency in emergency department (ED). The decision variables are no. of short stay beds for least acuity ED patients. The performance measurements used are national emergency department overcrowding score (NEDOCS) and ED retention rate (the percentage that patients stay in ED over than 48 hours in one month). Discrete event simulation (DES) is used as an analysis tool to evaluate the strategy. Also, common random number (CRN) technique is applied to enhance the simulation precision. The DES model was based on a census of 6 months' patients who were treated in the ED of the National Taiwan University Hospital Yunlin Branch. Our results show that the new short-stay boarding significantly impacts both the NEDOCS and ED retention rate when the no. of short stay beds is more than three.

Keywords: emergency department (ED), common random number (CRN), national emergency department overcrowding score (NEDOCS), discrete event simulation (DES)

Procedia PDF Downloads 322
1575 Investigation on the Effect of Sugarcane Bagasse/HDPE Composition on the Screw Withdrawal Resistance of Injection Molded Parts

Authors: Seyed Abdol Mohammad Rezavand, Mohammad Nikbakhsh

Abstract:

Withdrawal resistance of screws driven into HDPE/Sugarcane Bagasse injection molded parts was investigated. After chemical treatment and drying, SCB was pre-mixed with HDPE using twin extruder. The resulting granules are used in producing samples in injection molding machine. SCB with the quantity of %10, %20, and %30 was used. By using a suitable fixture, screw heads can take with tensile test machine grips. Parts with screws in the center and edge were fasten together. Then, withdrawal resistance was measured with tensile test machine. Injection gate is at the one edge of the part. The results show that by increasing SCB content in composite, the withdrawal resistance is decreased. Furthermore, the withdrawal resistance at the edges (near injection gate and the end of the filling path of mold cavity) is more than that of the center.

Keywords: polyethylene, sugarcane bagasse, wood plastic, screw, withdrawal resistance

Procedia PDF Downloads 553
1574 Study on the Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Bamboo fiber (BF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, bamboo composites were manufactured using different percentages of fiber, which were varying from 25-65% on the total weight of the composites. To fabricate the BF/PP composites untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical, and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact, and bending properties were observed precisely. Maximum tensile strength (TS) and bending strength (BS) were found for 50 wt% fiber composites, 65 MPa, and 85.5 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 5.73 GPa and 7.85 GPa respectively. The BF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (i.e. 10, 20, 30, 40, 50 and 60 kGy doses). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 30.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray) gamma dose showed better mechanical properties than other doses. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated BF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated BF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: bamboo fiber, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 107
1573 Investigation of Mechanical Properties and Positron Annihilation Lifetime Spectroscopy of Acrylonitrile Butadiene Styrene/Polycarbonate Blends

Authors: Ayman M. M. Abdelhaleem, Mustafa Gamal Sadek, Kamal Reyad, Montasser M. Dewidar

Abstract:

The main objective of this research is to study the effect of adding polycarbonate (PC) to pure Acrylonitrile Butadiene Styrene (ABS) using the injection moulding process. The PC was mixed mechanically with ABS in 10%, 20%, 30%, 40%, and 50% by weight. The mechanical properties of pure ABS reinforced with PC were investigated using tensile, impact, hardness, and wear tests. The results showed that, by adding 10%, 20%, 30%, 40%, and 50% wt. of PC to the pure ABS, the ultimate tensile strength increased from 55 N/mm2 for neat ABS to 57 N/mm2 (i.e. 3.63%), 60 N/mm2 (i.e. 9.09%), 63 N/mm2 (i.e. 14.54%), 66 N/mm2 (i.e. 20%), 69 N/mm2 (i.e. 25.45%) respectively. Test results also revealed nearly 5.72% improvement in young's modulus by adding 10% of PC to ABS, 16.74% improvement by adding 20%, 23.34% improvement by adding 30%, 27.75% improvement by adding 40%, and no other increase in case of 50%. The impact test results showed that with the increase of the PC content, first, the impact strength decreased and then increased gradually. The impact strength decreased rapidly when the content of PC was 0% to 10% range. As well as, in the case of 20%, 30%, 40%, and 50% PC, the impact strength is increased. The hardness test results, using the Shore D tester, showed that, as the PC particles contents increased, the hardness increased from 76 for the ABS to 80 for 10% PC, and decreased to 79 for 20% PC, and then increased to 80 in case of 30%, 40%, and 50% PC. Wear test results showed that PC improves the wear resistance of ABS/PC blends. Positron annihilation lifetime spectroscopy showed that with an increase of PC in ABS/PC blends, a slight decrease in free volume size and an increase in the tensile strength due to good adhesion between PC and ABS matrix, which acted as an advantage in the polymer matrix.

Keywords: ABS, PC, injection molding process, mechanical properties, lifetime spectroscopy

Procedia PDF Downloads 39
1572 Lessons Learned on a Reverse Field Trip: A Field Study of Prospective Students

Authors: Matthew David Marmet

Abstract:

Knowing your audience is important regardless of what profession you are in. Whether this audience is comprised of customers or students, having an idea of who these people are, where they come from, and some of the challenges they may have faced allows us to build better relationships with them. This paper will recap a field study experience that has been dubbed a "reverse field trip" to a local high school. Here, going back in time produced not only a great deal of nostalgia, but also served as a reminder of who prospective university students are before they arrive. This information is invaluable as it can help inform classroom (and other) strategies that may help them succeed, and persist through the college years, which will no doubt present them with undeniable changes and challenges. Interviews with school staff and observations of student behavior, both inside and outside the classroom, yielded several lessons learned (i.e., issues to address). These include considerations of regimen, three separate yet related levels of context, and expectation-setting. Each issue will be presented in detail, along with pedagogical strategies to help address them. These strategies have both student-level and institutional benefits as they have the potential not only to increase student engagement, but also improve retention rates.

Keywords: pedagogy, Student engagement, student retention, teaching strategy

Procedia PDF Downloads 55
1571 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

Keywords: membrane bioreactor, SRT, HRT, fouling

Procedia PDF Downloads 493
1570 Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness

Authors: J. M. Lee, W. R. Noh, C. Y. Kim, M. G. Lee

Abstract:

Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior.

Keywords: oxide scale, delamination, Fe analysis, roughness, thickness, stress state

Procedia PDF Downloads 317
1569 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 264
1568 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading

Authors: C. Shalini Devi

Abstract:

This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.

Keywords: composite, stress concentration, finite element analysis, tensile strength

Procedia PDF Downloads 423