Search results for: sustainable recycling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4751

Search results for: sustainable recycling

4601 Preparation and Characterization of Recycled Polyethylene Terephthalate/Polypropylene Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector

Authors: Merve Ozer, Tolga Gokkurt, Yasemen Gokkurt, Ezgi Bozbey

Abstract:

In this study, we investigated the recovery of Polyethylene terephthalate/Polypropylene (PET/PP)-containing automotive textile waste from post-product and post-consumer phases in the automotive sector according to the upcycling technique and the methods of formulation and production that would allow these wastes to be substituted as PP/PET alloys instead of original PP raw materials used in plastic edge band production. The laminated structure of the stated wastes makes it impossible to separate the incompatible PP and PET phases in content and thus produce a quality raw material or product as a result of recycling. Within the scope of a two-stage production process, a comprehensive process was examined using block copolymers and maleic grafted copolymers with different features to ensure that these two incompatible phases are compatible. The mechanical, thermal, and morphological properties of the plastic raw materials, which will be referred to as PP/PET blends obtained as a result of the process, were examined in detail and discussed their substitutability instead of the original raw materials.

Keywords: mechanical recycling, melt blending, plastic blends, polyethylene, polypropylene, recycling of plastics, terephthalate, twin screw extruders

Procedia PDF Downloads 40
4600 Investigating Sustainable Neighborhood Development in Jahanshahr

Authors: Khashayar Kashani Jou, Ilnaz Fathololoomi

Abstract:

Nowadays, access to sustainable development in cities is assumed as one of the most important goals of urban managers. In the meanwhile, neighborhood as the smallest unit of urban spatial organization has a substantial effect on urban sustainability. Hence, attention to and focus on this subject is highly important in urban development plans. The objective of this study is evaluation of the status of Jahanshahr Neighborhood in Karaj city based on sustainable neighborhood development indicators. This research has been applied based on documentary method and field surveys. Also, evaluating of Jahanshahr Neighborhood of Karaj shows that it has a high level in sustainability in physical and economical dimension while a low level in cultural and social dimension. For this purpose, this neighborhood as a semi-sustainable neighborhood must take measures for development of collective spaces and efficiency of utilizing the public neighborhood spaces via collaboration of citizens and officials.

Keywords: neighborhood, sustainable development, sustainable neighborhood development, Jahanshahr neighborhood

Procedia PDF Downloads 246
4599 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries

Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik

Abstract:

The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.

Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy

Procedia PDF Downloads 510
4598 Integrating Environmental and Ecological Justice for the Sustainable Development of Smart Cities: A Normative Eco Framework

Authors: Thomas Benson

Abstract:

This paper leverages theoretical insights into two different justice approaches – environmental justice and ecological justice – to examine the effectiveness of sustainable development within smart cities and related smart city technology initiatives. Through theoretical development, the author seeks to establish an Eco Framework for smart cities and urban sustainable development. In turn, this paper aims to proffer the notion that there are ecologically sustainable ways in which smart cities can get smarter, and that such strategies can be compatible with ecological justice and environmental justice. Ultimately, a single conceptual framework is put forward to integrate the above approaches and concepts with normative prescriptions, which can serve researchers in the continued examination of smart cities and policymakers in their sustainable development of smart cities.

Keywords: ecological justice, environmental justice, normative framework, smart cities, sustainable development

Procedia PDF Downloads 150
4597 Green Supply Chain Network Optimization with Internet of Things

Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen

Abstract:

Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.

Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling

Procedia PDF Downloads 295
4596 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 49
4595 Sustainable Agriculture of Tribal Farmers: An Analysis in Koraput and Malkangiri Districts of Odisha, India

Authors: Amrita Mishra, Tushar Kanti Das

Abstract:

Agriculture is the backbone of the economy of Odisha. Sustainability of agriculture holds the key for the development of Odisha. The Sustainable Development Goals are a framework of 17 goals and 169 targets across social, economical and environmental areas of sustainable development. Among all the seventeen goals the second goal is focusing on the promotion of Sustainable Agriculture. In this research our main aim is also to contribute an understanding of effectiveness of sustainable agriculture as a tool for rural development in the selected tribal district (i.e. Koraput and Malkangiri) of Odisha. These two districts are comes under KBK districts of Odisha which are identified as most backward districts of Odisha. The objectives of our study are to investigate the effect of sustainable agriculture on the lives of tribal farmers, to study whether the farmers are empowered by their participation in sustainable agriculture initiatives to move towards their own vision of development and to study the investment and profit ratio in sustainable agriculture. This research will help in filling the major gaps in sociological studies of sustainable agriculture. This information will helpful for farmers, development organisations, donors and policy makers in formulating the development of effective initiatives and policies to support the development of sustainable agriculture. In this study, we have taken 210 respondents and used various statistical techniques like chi-square test, one-way ANOVA and percentage analysis. This research shows that sustainable agriculture is an effective development strategy that benefits the tribal farmers to move towards their own vision of Good Fortune. The poor farmers who struggle to feed their families and maintain viable livelihoods on shrinking land for them sustainable agriculture are really benefited. The farmers are using homemade pesticides, manure and also getting the seeds from different development organisations and Government. So the investment in Sustainable Agriculture is very less. All farmers said their lives are now better than before. The creation of farmers groups for training and marketing for the produces was shown to be very important for empowerment.

Keywords: sustainable, agriculture, tribal farmers, development, empowerment

Procedia PDF Downloads 140
4594 Japan’s Challenges in Managing Resources and Implementing Strategies toward Sustainability

Authors: Dana Aljadaa, Hasim Altan

Abstract:

Japan’s strategy is based on improving the current resources and productivity by identifying the environmental challenges to progress further in many areas. For example, it will help in understanding the competitive challenges in the industry, emerging innovation, and other progresses. The present study seeks to examine the characteristics of sustainable practices using materials that will last longer and following environmental policies. There has been a major emphasis since 1990s and onwards about recycling and preserving the environment. Furthermore, the present paper analyses and argues how national interest in policy increases resource productivity. It is a universal law, but these actions may be different based on the unique situation of the country. In addition, the present study explains some of the strategies developed by the Environmental Agency of Japan in the last few years. There are a few resources reviewed involving ‘Strategy for an Environmental Nation in the 21st Century’ from 2001, ‘Clean Asia Initiative’ from 2008, and ‘New Growth Strategy’ from 2010. The present paper also highlights the emphasis on increasing efficiency, as it is an important part of sustainability. We finally conclude by providing reasoning on the impact and positivity of reducing production and consumption on the environment, resulting in a productive and progressive Japan for the near and long term future.

Keywords: eco-system, resource productivity, sound material-cycle, sustainable development

Procedia PDF Downloads 174
4593 Recycling of Sintered NdFeB Magnet Waste Via Oxidative Roasting and Selective Leaching

Authors: W. Kritsarikan, T. Patcharawit, T. Yingnakorn, S. Khumkoa

Abstract:

Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward a circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 °C to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 h. The leachate was then subjected to drying and roasting at 700 – 800 °C prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to an increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe₃O₄) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperatures. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 °C resulted in a greater Fe₂O₃ to Nd₂(SO₄)₃ ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 °C followed by acid leaching and roasting at 800 °C gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.

Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching

Procedia PDF Downloads 158
4592 Recycling of Sintered Neodymium-Iron-Boron (NdFeB) Magnet Waste via Oxidative Roasting and Selective Leaching

Authors: Woranittha Kritsarikan

Abstract:

Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward the circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 ᵒC to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 hours. The leachate was then subjected to drying and roasting at 700 – 800 ᵒC prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to the increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperature. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 ᵒC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 ᵒC followed by acid leaching and roasting at 800 ᵒC gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.

Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching

Procedia PDF Downloads 160
4591 A Study of Growth Factors on Sustainable Manufacturing in Small and Medium-Sized Enterprises: Case Study of Japan Manufacturing

Authors: Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi, Zefry Darmawan

Abstract:

Japan’s semiconductor industries have developed greatly in recent years. Many were started from a Small and Medium-sized Enterprises (SMEs) that found at a good circumstance and now become the prosperous industries in the world. Sustainable growth factors that support the creation of spirit value inside the Japanese company were strongly embedded through performance. Those factors were not clearly defined among each company. A series of literature research conducted to explore quantitative text mining about the definition of sustainable growth factors. Sustainable criteria were developed from previous research to verify the definition of the factors. A typical frame work was proposed as a systematical approach to develop sustainable growth factor in a specific company. Result of approach was review in certain period shows that factors influenced in sustainable growth was importance for the company to achieve the goal.

Keywords: SME, manufacture, sustainable, growth factor

Procedia PDF Downloads 225
4590 Biogas Potential of Deinking Sludge from Wastepaper Recycling Industry: Influence of Dewatering Degree and High Calcium Carbonate Content

Authors: Moses Kolade Ogun, Ina Korner

Abstract:

To improve on the sustainable resource management in the wastepaper recycling industry, studies into the valorization of wastes generated by the industry are necessary. The industry produces different residues, among which is the deinking sludge (DS). The DS is generated from the deinking process and constitutes a major fraction of the residues generated by the European pulp and paper industry. The traditional treatment of DS by incineration is capital intensive due to energy requirement for dewatering and the need for complementary fuel source due to DS low calorific value. This could be replaced by a biotechnological approach. This study, therefore, investigated the biogas potential of different DS streams (different dewatering degrees) and the influence of the high calcium carbonate content of DS on its biogas potential. Dewatered DS (solid fraction) sample from filter press and the filtrate (liquid fraction) were collected from a partner wastepaper recycling company in Germany. The solid fraction and the liquid fraction were mixed in proportion to realize DS with different water content (55–91% fresh mass). Spiked samples of DS using deionized water, cellulose and calcium carbonate were prepared to simulate DS with varying calcium carbonate content (0– 40% dry matter). Seeding sludge was collected from an existing biogas plant treating sewage sludge in Germany. Biogas potential was studied using a 1-liter batch test system under the mesophilic condition and ran for 21 days. Specific biogas potential in the range 133- 230 NL/kg-organic dry matter was observed for DS samples investigated. It was found out that an increase in the liquid fraction leads to an increase in the specific biogas potential and a reduction in the absolute biogas potential (NL-biogas/ fresh mass). By comparing the absolute biogas potential curve and the specific biogas potential curve, an optimal dewatering degree corresponding to a water content of about 70% fresh mass was identified. This degree of dewatering is a compromise when factors such as biogas yield, reactor size, energy required for dewatering and operation cost are considered. No inhibitory influence was observed in the biogas potential of DS due to the reported high calcium carbonate content of DS. This study confirms that DS is a potential bioresource for biogas production. Further optimization such as nitrogen supplementation due to DS high C/N ratio can increase biogas yield.

Keywords: biogas, calcium carbonate, deinking sludge, dewatering, water content

Procedia PDF Downloads 132
4589 Toward an Integrated Safe and Sustainable Food System: A General Overview

Authors: Erkan Rehber, Hasan Vural, Sule Turhan

Abstract:

It is a fact that food is a vital need of human beings. As a consumer, everyone has the right to access adequate and safe food. There are considerable development to establish quality standards and schemes to have safe foods and sustainable agriculture alternatives to protect natural resources and environment to reach this target. Recently, there is also a remarkable development in integration and combination of these efforts. Food Safety and Sustainable Agriculture Forum organized in 2014, Beijing shows that it is a global awareness more than being an individual view. Eventually, quality standards, assurance systems applied to conventional agriculture has to be applied to sustainable agriculture alternatives to have a holistic sustainable food chain from seed to fork. All actors of the whole food system from farmer to ultimate consumers, along with the state, have to work together meeting this big challenge.

Keywords: integrated safe, food safety, sustainable food system, consumer

Procedia PDF Downloads 526
4588 Willingness to Pay for Improvements of MSW Disposal: Views from Online Survey

Authors: Amornchai Challcharoenwattana, Chanathip Pharino

Abstract:

Rising amount of MSW every day, maximizing material diversions from landfills via recycling is a prefer method to land dumping. Characteristic of Thai MSW is classified as 40 -60 per cent compostable wastes while potentially recyclable materials in waste streams are composed of plastics, papers, glasses, and metals. However, rate of material recovery from MSW, excluding composting or biogas generation, in Thailand is still low. Thailand’s recycling rate in 2010 was only 20.5 per cent. Central government as well as local governments in Thailand have tried to curb this problem by charging some of MSW management fees at the users. However, the fee is often too low to promote MSW minimization. The objective of this paper is to identify levels of willingness-to-pay (WTP) for MSW recycling in different social structures with expected outcome of sustainable MSW managements for different town settlements to maximize MSW recycling pertaining to each town’s potential. The method of eliciting WTP is a payment card. The questionnaire was deployed using online survey during December 2012. Responses were categorized into respondents living in Bangkok, living in other municipality areas, or outside municipality area. The responses were analysed using descriptive statistics, and multiple linear regression analysis to identify relationships and factors that could influence high or low WTP. During the survey period, there were 168 filled questionnaires from total 689 visits. However, only 96 questionnaires could be usable. Among respondents in the usable questionnaires, 36 respondents lived in within the boundary of Bangkok Metropolitan Administration while 45 respondents lived in the chartered areas that were classified as other municipality but not in BMA. Most of respondents were well-off as 75 respondents reported positive monthly cash flow (77.32%), 15 respondents reported neutral monthly cash flow (15.46%) while 7 respondent reported negative monthly cash flow (7.22%). For WTP data including WTP of 0 baht with valid responses, ranking from the highest means of WTP to the lowest WTP of respondents by geographical locations for good MSW management were Bangkok (196 baht/month), municipalities (154 baht/month), and non-urbanized towns (111 baht/month). In-depth analysis was conducted to analyse whether there are additional room for further increase of MSW management fees from the current payment that each correspondent is currently paying. The result from multiple-regression analysis suggested that the following factors could impacts the increase or decrease of WTP: incomes, age, and gender. Overall, the outcome of this study suggests that survey respondents are likely to support improvement of MSW treatments that are not solely relying on landfilling technique. Recommendations for further studies are to obtain larger sample sizes in order to improve statistical powers and to provide better accuracy of WTP study.

Keywords: MSW, willingness to pay, payment card, waste seperation

Procedia PDF Downloads 264
4587 Fast Fashion Parallel to Sustainable Fashion in India

Authors: Saurav Sharma, Deepshikha Sharma, Pratibha Sharma

Abstract:

This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability.

Keywords: fast fashion, sustainable fashion, sustainability, India

Procedia PDF Downloads 742
4586 Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction

Authors: Meor Othman Hamzah, Lillian Gungat, Nur Izzi Md. Yusoff, Jan Valentin

Abstract:

The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture’s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics.

Keywords: recycled asphalt, warm mix additive, rheological, mixture performance

Procedia PDF Downloads 486
4585 Sustainable Urban Waterfronts Using Sustainability Assessment Rating System

Authors: R. M. R. Hussein

Abstract:

Sustainable urban waterfront development is one of the most interesting phenomena of urban renewal in the last decades. However, there are still many cities whose visual image is compromised due to the lack of a sustainable urban waterfront development, which consequently affects the place of those cities globally. This paper aims to reimagine the role of waterfront areas in city design, with a particular focus on Egypt, so that they provide attractive, sustainable urban environments while promoting the continued aesthetic development of the city overall. This aim will be achieved by determining the main principles of a sustainable urban waterfront and its applications. This paper concentrates on sustainability assessment rating systems. A number of international case-studies, wherein a city has applied the basic principles for a sustainable urban waterfront and have made use of sustainability assessment rating systems, have been selected as examples which can be applied to the urban waterfronts in Egypt. This paper establishes the importance of developing the design of urban environments in Egypt, as well as identifying the methods of sustainability application for urban waterfronts.

Keywords: sustainable urban waterfront, green infrastructure, energy efficient, Cairo

Procedia PDF Downloads 431
4584 Investigation of the Physicochemistry in Leaching of Blackmass for the Recovery of Metals from Spent Lithium-Ion Battery

Authors: Alexandre Chagnes

Abstract:

Lithium-ion battery is the technology of choice in the development of electric vehicles. This technology is now mature, although there are still many challenges to increase their energy density while ensuring an irreproachable safety of use. For this goal, it is necessary to develop new cathodic materials that can be cycled at higher voltages and electrolytes compatible with these materials. But the challenge does not only concern the production of efficient batteries for the electrochemical storage of energy since lithium-ion battery technology relies on the use of critical and/or strategic value resources. It is, therefore, crucial to include Lithium-ion batteries development in a circular economy approach very early. In particular, optimized recycling and reuse of battery components must both minimize their impact on the environment and limit geopolitical issues related to tensions on the mineral resources necessary for lithium-ion battery production. Although recycling will never replace mining, it reduces resource dependence by ensuring the presence of exploitable resources in the territory, which is particularly important for countries like France, where exploited or exploitable resources are limited. This conference addresses the development of a new hydrometallurgical process combining leaching of cathodic material from spent lithium-ion battery in acidic chloride media and solvent extraction process. Most of recycling processes reported in the literature rely on the sulphate route, and a few studies investigate the potentialities of the chloride route despite many advantages and the possibility to develop new chemistry, which could get easier the metal separation. The leaching mechanisms and the solvent extraction equilibria will be presented in this conference. Based on the comprehension of the physicochemistry of leaching and solvent extraction, the present study will introduce a new hydrometallurgical process for the production of cobalt, nickel, manganese and lithium from spent cathodic materials.

Keywords: lithium-ion battery, recycling, hydrometallurgy, leaching, solvent extraction

Procedia PDF Downloads 45
4583 Plasma Treatment of a Lignite Using Water-Stabilized Plasma Torch at Atmospheric Pressure

Authors: Anton Serov, Alan Maslani, Michal Hlina, Vladimir Kopecky, Milan Hrabovsky

Abstract:

Recycling of organic waste is an increasingly hot topic in recent years. This issue becomes even more interesting if the raw material for the fuel production can be obtained as the result of that recycling. A process of high-temperature decomposition of a lignite (a non-hydrolysable complex organic compound) was studied on the plasma gasification reactor PLASGAS, where water-stabilized plasma torch was used as a source of high enthalpy plasma. The plasma torch power was 120 kW and allowed heating of the reactor to more than 1000 °C. The material feeding rate in the gasification reactor was selected 30 and 60 kg per hour that could be compared with small industrial production. An efficiency estimation of the thermal decomposition process was done. A balance of the torch energy distribution was studied as well as an influence of the lignite particle size and an addition of methane (CH4) in a reaction volume on the syngas composition (H2+CO). It was found that the ratio H2:CO had values in the range of 1,5 to 2,5 depending on the experimental conditions. The recycling process occurred at atmospheric pressure that was one of the important benefits because of the lack of expensive vacuum pump systems. The work was supported by the Grant Agency of the Czech Republic under the project GA15-19444S.

Keywords: atmospheric pressure, lignite, plasma treatment, water-stabilized plasma torch

Procedia PDF Downloads 333
4582 The Application of Nuclear Energy for Sustainable Agriculture and Food Security: A Review

Authors: Gholamreza Farrokhi, Behzad Sani

Abstract:

The goals of sustainable agricultural are development, improved nutrition, and food security. Sustainable agriculture must be developed that will meet today’s needs for food and other products, as well as preserving the vital natural resource base that will allow future generations to meet their needs. Sustainable development requires international cooperation and the effective use of technology. Access to sustainable sources of food will remain a preeminent challenge in the decades to come. Based upon current practice and consumption, agricultural production will have to increase by about 70% by 2050 to meet demand. Nuclear techniques are used in developing countries to increase production sustainably by breeding improved crops, enhancing livestock reproduction and nutrition, as well as controlling animal and plant pests and diseases. Post-harvest losses can be reduced and safety increased with nuclear technology. Soil can be evaluated with nuclear techniques to conserve and improve soil productivity and water management.

Keywords: food safety, food security, nuclear techniques, sustainable agriculture, sustainable future

Procedia PDF Downloads 327
4581 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 346
4580 Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien I.Abdel-Shafy

Abstract:

The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments.

Keywords: grey water, water intervals, Syngonium plant, recycling water, vegetative growth

Procedia PDF Downloads 79
4579 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics

Authors: Fares Alsewailem

Abstract:

Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.

Keywords: Recycling, PET, PS, HDPE, mechanical

Procedia PDF Downloads 259
4578 Integrating Efficient Anammox with Enhanced Biological Phosphorus Removal Process Through Flocs Management for Sustainable Ultra-deep Nutrients Removal from Municipal Wastewater

Authors: Qiongpeng Dan, Xiyao Li, Qiong Zhang, Yongzhen Peng

Abstract:

The nutrients removal from wastewater is of great significance for global wastewater recycling and sustainable reuse. Traditional nitrogen and phosphorus removal processes are very dependent on the input of aeration and carbon sources, which makes it difficult to meet the low-carbon goal of energy saving and emission reduction. This study reported a proof-of-concept demonstration of integrating anammox and enhanced biological phosphorus removal (EBPR) by flocs management in a single-stage hybrid bioreactor (biofilms and flocs) for simultaneous nitrogen and phosphorus removal (SNPR). Excellent removal efficiencies of nitrogen (97.7±1.3%) and phosphorus (97.4±0.7%) were obtained in low C/N ratio (3.0±0.5) municipal wastewater treatment. Interestingly, with the loss of flocs, anammox bacteria (Ca. Brocadia) was highly enriched in biofilms, with relative and absolute abundances reaching up to 12.5% and 8.3×1010 copies/g dry sludge, respectively. The anammox contribution to nitrogen removal also rose from 32.6±9.8% to 53.4±4.2%. Endogenous denitrification by flocs was proven to be the main contributor to both nitrite and nitrate reduction, and flocs loss significantly promoted nitrite flow towards anammox, facilitating AnAOB enrichment. Moreover, controlling the floc's solid retention time at around 8 days could maintain a low poly-phosphorus level of 0.02±0.001 mg P/mg VSS in the flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This study provides an update on developing a simple and feasible strategy for integrating anammox and EBPR for SNPR in mainstream municipal wastewater.

Keywords: anammox process, enhanced biological phosphorus removal, municipal wastewater, sustainable nutrients removal

Procedia PDF Downloads 0
4577 Reviving Sustainable Architecture in Non-Wester Culture

Authors: Khaled Asfour

Abstract:

Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.

Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster

Procedia PDF Downloads 463
4576 Acoustic and Thermal Isolation Performance Comparison between Recycled and Ceramic Roof Tiles Using Digital Holographic Interferometry

Authors: A. Araceli Sánchez, I. Manuel H. De la Torre, S. Fernando Mendoza, R. Cesar Tavera, R. Manuel de J. Briones

Abstract:

Recycling, as part of any sustainable environment, is continuously evolving and impacting on new materials in manufacturing. One example of this is the recycled solid waste of Tetra Pak ™ packaging, which is a highly pollutant waste as it is not biodegradable since it is manufactured with different materials. The Tetra Pak ™ container consists of thermally joined layers of paper, aluminum and polyethylene. Once disposed, this packaging is recycled by completely separating the paperboard from the rest of the materials. The aluminum and the polyethylene remain together and are used to create the poly-aluminum, which is widely used to manufacture roof tiles. These recycled tiles have different thermal and acoustic properties compared with traditional manufactured ceramic and cement tiles. In this work, we compare a group of tiles using nondestructive optical testing to measure the superficial micro deformations of the tiles under well controlled experiments. The results of the acoustic and thermal tests show remarkable differences between the recycled tile and the traditional ones. These results help to determine which tile could be better suited to the specific environmental conditions in countries where extreme climates, ranging from tropical, desert-like, to very cold are experienced throughout the year.

Keywords: acoustic, digital holographic interferometry, isolation, recycled, roof tiles, sustainable, thermal

Procedia PDF Downloads 427
4575 A Strategy of Green Sukuk to Promote Sustainable Development Goals (SDGs) in Indonesia

Authors: Amrial, Yuri Oktaviani, Ziyan Muhammad Farhan

Abstract:

On the phase of shifting paradigm into sustainability, Indonesia is involved in Sustainable Development Goals (SDGs) project. That act is revealed by creating Medium and Long Term Roadmap for Sustainable Finance in Indonesia which collaborated design by Indonesia Financial Service Board (OJK) and Ministry of Environment and Forestry. One of alternative for that infrastructure financing is sharia-based financing, Green Sukuk (Sukuk specified on sustainable infrastructure project). Green Sukuk for infrastructure financing in Indonesia can be issued by the government in the form of Sukuk Project Financing. Moreover, banks in Indonesia can also participate for the issuance of Green Sukuk. So that the banks can create a financing for people who are concerned about environmental issues. By using qualitative methods and literature review, this paper aims to discuss potential, strategy and planning of Green Sukuk for financing sustainable infrastructure in the purpose of SDGs. This paper will benefit for government to give scientific discussion on the strategy of Green Sukuk in promoting sustainable goals infrastructure project in Indonesia.

Keywords: green sukuk, infrastructure, SDGs, sustainable

Procedia PDF Downloads 334
4574 Sustainable Tourism from a Multicriteria Analysis Perspective

Authors: Olga Blasco-Blasco, Vicente Liern

Abstract:

The development of tourism since the mid-20th century has raised problems of overcrowding, indiscriminate construction in seaside areas and gentrification. Increasingly, the World Tourism Organisation and public institutions are promoting policies that encourage sustainability. From the perspective of sustainability, three types of tourism can be established: traditional tourism, sustainable tourism and sustainable impact tourism. Measuring sustainability is complex due to its multiple dimensions of different relative importance and diversity in nature. In order to try to answer this problem and to identify the benefits of applying policies that promote sustainable tourism, a decision-making analysis will be carried out through the application of a multicriteria analysis method. The proposal is applied to hotel reservations and to the evaluation and management of tourism sustainability in the Spanish Autonomous Communities.

Keywords: sustainable tourism, multicriteria analysis, flexible optimization, composite indicators

Procedia PDF Downloads 273
4573 Sustainable Traditional Architecture and Urban Planning in Hot–Humid Climate of Iran

Authors: Farnaz Nazem

Abstract:

This paper concentrates on the sustainable traditional architecture and urban planning in hot-humid regions of Iran. In a vast country such as Iran with different climatic zones traditional builders have presented series of logical solutions for human comfort. The aim of this paper is to demonstrate traditional architecture in hot-humid climate of Iran as a sample of sustainable architecture. Iranian traditional architecture has been able to response to environmental problems for a long period of time. Its features are based on climatic factors, local construction materials of hot-humid regions and culture. This paper concludes that Iranian traditional architecture can be addressed as a sustainable architecture.

Keywords: hot-humid climate, Iran, sustainable traditional architecture, urban planning

Procedia PDF Downloads 577
4572 Prolonging Late Career Phase - a Sustainable Career Perspective

Authors: Hanna Salminen

Abstract:

Due to the large societal changes in working life, such as retirement reforms, globalization and technological changes, careers are becoming longer, more varied and unpredictable than before. Similar to other new career concepts, such as protean and boundaryless career, a sustainable career concept emphasizes an individual’s active role and agency in managing his/her own career in changing working life. However, the sustainable career concept also underlines the importance of safeguarding and developing human capital over time and thereby fostering continuity. Especially, the theoretical discussion around sustainable careers stresses flexible career choices that meet an individual’s own personal needs, allow work-family balance and promotes continuous learning. Although sustainable careers concern employees at all ages, this study focuses on older employees (aged 50+). So far, the changing nature of careers has been mainly investigated among younger generations, and the changing and prolonging late career phase has received less attention among career scholars. In other words, there is lack of knowledge regarding what constitutes a sustainable career in the late career phase and how the individual, organizational, and societal levels of sustainable career ecosystem are interconnected. The theoretical discussion around sustainable careers is closely linked to the sustainable management of human resources in organizations. In the field of human resource management (HRM), sustainable HRM has received more attention in recent years and it has been seen as a step forward from strategic HRM approach. As a concept, sustainable HRM stresses the long-term focus on organizations’ social, economic, and ecological resources, and the benefits of HRM practices for employees, organizations, and the society at large. However, some HRM scholars argue that the ecological and financial matters have overshadowed the social aspect of sustainability. In this study, the sustainable career and sustainable HRM literature are combined. As a result of an integrative literature review, this study provides new insight, how sustainable late career phase has been understood and conceptualized in sustainable career and sustainable HRM literature.

Keywords: sustainability, career, human resource management, ageing

Procedia PDF Downloads 108