Search results for: substitution of reinforcement material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7347

Search results for: substitution of reinforcement material

7287 Effect of Ba Addition on the Dielectric Properties and Microstructure of (Ca₀.₆Sr₀.₄)ZrO₃

Authors: Ying-Chieh Lee, Huei-Jyun Shih, Ting-Yang Wang, Christian Pithan

Abstract:

This study focuses on the synthesis and characterization of Ca₀.₆Sr₀.₄₋ₓBaₓZrO₃ (x = 0.01, 0.04, 0.07, and 0.10) ceramics prepared via the solid-state method and sintered at 1450 °C. The impact of Sr substitution by Ba at the A-site of the perovskite structure on crystalline properties and microwave dielectric performance was investigated. The experimental results show the formation of a single-phase structure, Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃(CSZ), across the entire range of x values. It is evident that the Ca₀.₆Sr₀.₃₉Ba₀.₀₁ZrO₃ ceramics exhibit the highest sintering density and the lowest porosity. These ceramics exhibit impressive dielectric properties, including a high permittivity of 28.38, low dielectric loss of 4.0×10⁻⁴, and a Q factor value of 22988 at 9~10GHz. The research reveals that the influences of Sr substitution by Ba in enhancing the microwave dielectric properties of Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃ ceramics and the impedance curves clearly showed effects on the electrical properties.

Keywords: NPO dielectric material, (Ca₀.₆Sr₀.₄)ZrO₃, microwave dielectric properties

Procedia PDF Downloads 25
7286 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction

Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim

Abstract:

Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.

Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section

Procedia PDF Downloads 369
7285 Starch Valorization: Biorefinery Concept for the Circular Bioeconomy

Authors: Maider Gómez Palmero, Ana Carrasco Pérez, Paula de la Sen de la Cruz, Francisco Javier Royo Herrer, Sonia Ascaso Malo

Abstract:

The production of bio-based products for different purposes is one of the strategies that has grown the most at European and even global levels, seeking to contribute to mitigating the impacts associated with climate change and to achieve the ambitious objectives set in this regard. However, the substitution of fossil-based products for bio-based products requires a challenging and deep transformation and adaptation of the secondary and primary sectors and, more specifically, in the latter, the agro-industries. The first step to developing a bio-based value chain focuses on the availability of a resource with the right characteristics for the substitution sought. This, in turn, requires a significant reshaping of the forestry/agricultural sector but also of the agro-industry, which has a relevant potential to be deployed as a supplier and develop a robust logistical supply chain and to market a biobased raw material at a competitive price. However, this transformation may involve a profound restructuring of its traditional business model to incorporate biorefinery concepts. In this sense, agro-industries that generate by-products in their processes that are currently not valorized, such as potato processing rejects or the starch found in washing water, constitute a potential raw material that can be used for different bio-applications. This article aims to explore this potential to evaluate the most suitable bio applications to target and identify opportunities and challenges.

Keywords: starch valorisation, biorefinery, bio-based raw materials, bio-applications

Procedia PDF Downloads 16
7284 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 41
7283 Efficiency of Geocell Reinforcement for Using in Expanded Polystyrene Embankments via Numerical Analysis

Authors: S. N. Moghaddas Tafreshi, S. M. Amin Ghotbi

Abstract:

This paper presents a numerical study for investigating the effectiveness of geocell reinforcement in reducing pressure and settlement over EPS geofoam blocks in road embankments. A 3-D FEM model of soil and geofoam was created in ABAQUS, and geocell was also modeled realistically using membrane elements. The accuracy of the model was tested by comparing its results with previous works. Sensitivity analyses showed that reinforcing the soil cover with geocell has a significant influence on the reduction of imposed stresses over geofoam and consequently decreasing its deformation.

Keywords: EPS geofoam, geocell, reinforcement, road embankments, lightweight fill

Procedia PDF Downloads 239
7282 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement

Authors: Sh. Minapoor, S. Ajeli

Abstract:

Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.

Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending

Procedia PDF Downloads 276
7281 Theoretical Stress-Strain Model for Confined Concrete by Rectangular Reinforcement

Authors: Mizam Dogan, Hande Gökdemir

Abstract:

In reinforced concrete elements, reinforcement steel bars are placed in concrete both longitudinal and lateral directions. The lateral reinforcement (called as confinement) which is used for confining circular RC elements is in a spiral shape. If the cross section of RC element is rectangular, stirrups should be rectangular too. At very high compressive stresses concrete will reach its limit strain value and therefore concrete outside the lateral reinforcement, which is not confined, will crush and start to spell. At this stage, concrete core of the RC element tries to expand laterally as a reason of high Poisson’s ratio value of concrete. Such a deformation is prevented by the lateral reinforcement which applies lateral passive pressure on concrete. At very high compressive stresses, the strength of reinforced column member rises to four times σ 2. This increase in strength of member is related to the properties of rectangular stirrups. In this paper, effect of stirrup step spacing to column behavior is calculated and presented confined concrete model is proved by numerical solutions.

Keywords: confined concrete, concrete column, stress-strain, stirrup, solid, frame

Procedia PDF Downloads 420
7280 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: geogrid, reinforcement, stabilization, subgrade

Procedia PDF Downloads 289
7279 Thermal Analysis of a Composite of Coco Fiber and Látex

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.

Keywords: natural fiber, composite, temperature, latex, gradient

Procedia PDF Downloads 774
7278 Impact of Gd³⁺ Substitution on Structural, Optical and Magnetic Properties of ZnFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda

Abstract:

In this report, the impact of Gd³⁺ substitution in ZnFe₂O₄ spinel ferrite nanoparticles on structural, optical and magnetic properties was investigated. ZnFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles were synthesized by honey-mediated sol-gel combustion method. X-ray diffraction, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy confirmed the formation of cubic spinel ferrite crystal structure. The morphology and elemental analysis were studied using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. UV-Visible reflectance spectroscopy revealed band gap variation with concentration of Gd³⁺ substitution in ZnFe₂O₄ nanoparticles. Magnetic property was studied using vibrating sample magnetometer at room temperature. The synthesized spinel ferrite nanoparticles showed ferromagnetic behaviour. The evaluated magnetic parameters such as saturation magnetization, coercivity and remanence showed variation with Gd³⁺ substitution in spinel ferrite nanoparticles. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: sol-gel combustion method, nanoparticles, magnetic property, optical property

Procedia PDF Downloads 265
7277 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESAR-LCPC

Procedia PDF Downloads 280
7276 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 317
7275 Shear Reinforcement of Stone Columns During Soil Liquefaction

Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida

Abstract:

The aim of this paper is to assess the effectiveness of stone columns as a liquefaction countermeasure focusing on shear reinforcementbenefit. In fact, stone columns which have high shear modulus relative to the surrounding soils potentially can carry higher shear stress levels. Thus, stone columns provide shear reinforcement and decrease the Cyclic Shear Stress Ratio CSR to which the treated soils would be subjected during an earthquake. In order to quantify the level of shear stress reduction in reinforced soil, several approaches have been developed. Nevertheless, the available approaches do not take into account the improvement of the soil parameters, mainly the shear modulusdue to stone columns installation. Indeed, in situ control tests carried out before and after the installation of stone columns based upon the results of collected data derived from 24 case histories have given evidence of the improvement of the existing soil properties.In this paper, the assessment of shear reinforcement of stone columns that accounts such improvement of the soil parameters due to stone column installation is investigated. Comparative results indicate that considering the improvement effects considerably affect the assessment of shear reinforcement for liquefaction analysis of reinforced soil by stone columns.

Keywords: stone column, liquefaction, shear reinforcement, CSR, soil improvement

Procedia PDF Downloads 119
7274 Effect of Reinforcement Density on the Behaviour of Reinforced Sand Under a Square Footing

Authors: Dhyaalddin Bahaalddin Noori Zangana

Abstract:

This study involves the behavior of reinforced sand under a square footing. A series of bearing capacity tests were performed on a small-scale laboratory model, which filled with a poorly-graded homogenous bed of sand, which was placed in a medium dense state using sand raining technique. The sand was reinforced with 40 mm wide household aluminum foil strips. The main studied parameters was to consider the effect of reinforcing strip length, with various linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcement below the footing, on load-settlement behavior, bearing capacity ratio and settlement reduction factor. The relation of load-settlement generally showed similar trend in all the tests. Failure was defined as settlement equal to 10% of the footing width. The recommended optimum reinforcing strip length, linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcing strips that give the maximum bearing capacity improvement and minimum settlement reduction factor were presented and discussed. Different bearing capacity ration versus length of the reinforcing strips and settlement reduction factor versus length of the reinforcing strips relations at failure were showed improvement of bearing capacity ratio by a factor of 3.82 and reduction of settlement reduction factor by a factor of 0.813. The optimum length of reinforcement was found to be 7.5 times the footing width.

Keywords: square footing, relative density, linear density of reinforcement, bearing capacity ratio, load-settlement behaviour

Procedia PDF Downloads 71
7273 Mechanical and Tribological Properties of Al7075 Reinforced with Graphene-Beryl Hybrid Metal Matrix Composites

Authors: Mohamed Haneef, Shanawaz Patil, Syed Zameer, Mohammed Mohsin Ali

Abstract:

The emerging technologies and trends of present generation requires downsizing the unwieldy structures to light weight structures on one hand and integration of varied properties on other hand to meet the application demands. In the present investigation an attempt is made to familiarize and best possibilities of reinforcing agent in aluminum 7075 matrix with naturally occurring beryl (Be) and graphene (Gr) to develop a new hybrid composite material. A stir casting process was used to fabricate with fixed volume fraction of 6wt% weight beryl and various volume fractions of 0.5wt%, 1wt%, 1.5wt% and 2wt% of graphene. The properties such as tensile strength, hardness and dry sliding wear behavior of hybrid composites were examined. The crystallite size and morphology of the graphene and beryl particles were analyzed with X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. It was observed that ultimate tensile strength and hardness of the hybrid composite increased with increasing reinforcement volume fraction as compared to specimen without reinforcement additions. The dry sliding wear behavior of the hybrid composites decreases as compared to Al7075 alloy without reinforcement.

Keywords: Al7075, beryl, graphene, TEM, wear

Procedia PDF Downloads 129
7272 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 2
7271 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 146
7270 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.

Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis

Procedia PDF Downloads 49
7269 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 155
7268 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose

Authors: Rungsinee Sothornvit, Pattrathip Rodsamran

Abstract:

Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.

Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity

Procedia PDF Downloads 365
7267 Effect of Reinforcement Steel Ratio on the Behavior of R. C. Columns Exposed to Fire

Authors: Hatem Ghith

Abstract:

This research paper experimentally investigates the effect of burning by fire flame from one face on the behavior and load carrying capacity for reinforced columns. Residual ultimate load carrying capacity, axial deformation, crack pattern and maximum crack width for column specimens with and without burning were recorded and discussed. Tested six reinforced concrete columns were divided into control specimen and two groups. The first group was exposed to a fire with a different temperature (300, 500, 700 °C) for an hour with reinforcement ratio 0.89% and the second group was exposed to a fire with a temperature 500 °C for an hour with different reinforcement ratio (0.89%, 2.18%, and 3.57%), then all columns were tested under short-term axial loading. From the obtained results, it could be concluded that the fire parameters significantly influence the fire resistance of R.C columns. The fire parameters cause axial deformation and moment on the column due to the eccentricity that generated from the difference in temperature and consequently the compressive stresses of both faces of the columns but the increased reinforcement ratio enhanced the resistance of columns for axial deformation and moment on the column due to the eccentricity.

Keywords: columns, reinforcement ratio, strength, time exposure

Procedia PDF Downloads 215
7266 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure

Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed

Abstract:

Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.

Keywords: dynamic loading, finite element, geocell-reinforcement, GRP pipe, PLAXIS 3D, surface settlement

Procedia PDF Downloads 225
7265 Experimental Research on Ductility of Regional Confined Concrete Beam

Authors: Qinggui Wu, Xinming Cao, Guyue Guo, Jiajun Ding

Abstract:

In efforts to study the shear ductility of regional confined concrete beam, 5 reinforced concrete beams were tested to examine its shear performance. These beams has the same shear span ratio, concrete strength, different ratios of tension reinforcement and shapes of stirrup. The purpose of the test is studying the effects of stirrup shape and tension reinforcement ratio on failure mode and shear ductility. The test shows that the regional confined part can be used as an independent part and the rest of the beam is good to work together so that the ductility of the beam is more one time higher than that of the normal confined concrete beam. The related laws of the effect of tension reinforcement ratio and stirrup shapes on beam’s shear ductility are founded.

Keywords: ratio of tension reinforcement, stirrup shapes, shear ductility, failure mode

Procedia PDF Downloads 297
7264 The Effect of Substitution of CaO/MgO and CaO/SrO on in vitro Bioactivity of Sol-Gel Derived Bioactive Glass

Authors: Zeinab Hajifathali, Moghan Amirhosseinian

Abstract:

This study had two main aims: firstly, to determine how the individual substitution of CaO/MgO and CaO/SrO can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG) and secondly to introduce a composition in the 60SiO2–(36-x)CaO–4P2O5–(x)MgO and 60SiO2–(36-x)CaO–4P2O5–(x)SrO quaternary systems (where x= 0, 5, 10 mol.%) with enhanced biocompatibility, alkaline phosphatase (ALP) activity, and more efficient antibacterial activity against MRSA bacteria. Results showed that both magnesium-substituted bioactive glasses (M-BGs) and strontium- substituted bioactive glasses (S-BGs) retarded the Hydroxyapatite (HA) formation. Meanwhile, magnesium had more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ALP assays revealed that the presence of moderate amount (5 mol%) of Mg and Sr had a stimulating effect on increasing of both proliferation and differentiation of MC3T3-E1 cells. Live dead and Dapi/actin staining revealed both substitution of CaO/MgO and CaO/SrO resulted in more biocompatibility and stimulation potential of the MC3T3 cells compared with control. Taken together, among all of the synthesized magnesium substituted (MBGs) and strontium substituted (SBGs), the sample 58- BG with 5 mol% CaO/MgO substitution (BG-5M) was considered as a multifunctional biomaterial in bone tissue regeneration field with enhanced biocompatibility, ALP activity as well as the highest antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria.

Keywords: apatite, alkaline earth, bioactivity, biomedical applications, Sol-gel

Procedia PDF Downloads 149
7263 Formulation and Physico-Mechanical Characterization of a Self-Compacting Concrete Containing Seashells as an Addition Material

Authors: Brahim Safi, Mohammed Saidi, A. Benmounah, Jozef Mitterpach

Abstract:

The aim of this work is to study the rheological and physico-mechanical properties of a self-compacting concrete elaborated with sea shells as an addition cementitious (total replacement of limestone fillers) and sand (partial and total substitution fine aggregate). Also, this present study is registered in the context of sustainable development by using this waste type which caused environmental problems. After preparation the crushed shells (obtaining fine aggregate) and finely crushed shells (obtaining end powder), concretes were manufactured using these two products. Rheological characterization tests (fluidity, filling capacity and segregation) and physico-mechanical properties (density and strength) were carried on these concretes. The results obtained show that it can be used as fin addition (by total replacement of limestone) or also used as sand by total substitution of natural sand.

Keywords: seashells, limestone, sand, self-compacting concrete, fluidity, compressive strength, flexural strength

Procedia PDF Downloads 246
7262 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 106
7261 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System

Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi

Abstract:

Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.

Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process

Procedia PDF Downloads 106
7260 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 446
7259 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 114
7258 Effect of the Truss System to the Flexural Behavior of the External Reinforced Concrete Beams

Authors: Rudy Djamaluddin, Yasser Bachtiar, Rita Irmawati, Abd. Madjid Akkas, Rusdi Usman Latief

Abstract:

The aesthetic qualities and the versatility of reinforced concrete have made it a popular choice for many architects and structural engineers. Therefore, the exploration of natural materials such as gravels and sands as well as lime-stone for cement production is increasing to produce a concrete material. The exploration must affect to the environment. Therefore, the using of the concrete materials should be as efficient as possible. According to its natural behavior of the concrete material, it is strong in compression and weak in tension. Therefore the contribution of the tensile stresses of the concrete to the flexural capacity of the beams is neglected. However, removing of concrete on tension zone affects to the decreasing of flexural capacity. Introduce the strut action of truss structures may an alternative to solve the decreasing of flexural capacity. A series of specimens were prepared to clarify the effect of the truss structures in the concrete beams without concrete on the tension zone. Results indicated that the truss system is necessary for the external reinforced concrete beams. The truss system of concrete beam without concrete on tension zone (BR) could develop almost same capacity to the normal beam (BN). It can be observed also that specimens BR has lower number of cracks than specimen BN. This may be caused by the fact that there was no bonding effect on the tensile reinforcement on specimen BR to distribute the cracks.

Keywords: external reinforcement, truss, concrete beams, flexural behavior

Procedia PDF Downloads 410