Search results for: structural and magnetic properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12561

Search results for: structural and magnetic properties

12441 Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field

Authors: P. W. Chen, C. T. Chang, Y. Peng, J. Y. Wu, D. J. Jan, Md. Manirul Ali

Abstract:

In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength.

Keywords: cathode spot, vacuum arc discharge, oblique magnetic field, tangential magnetic field

Procedia PDF Downloads 291
12440 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization

Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki

Abstract:

Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution

Procedia PDF Downloads 435
12439 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 42
12438 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 294
12437 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 290
12436 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 322
12435 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 339
12434 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.

Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization

Procedia PDF Downloads 102
12433 Synthesis, Structural and Magnetic Properties of CdFe2O4 Ferrite

Authors: Justice Zakhele Msomi

Abstract:

Nanoparticles of CdFe2O4 with particle size of about 10 nm have been synthesized by high energy ball milling and co-precipitation processes. The synthesis route appears to have some effects on the properties. The compounds have been characterized by X-ray diffraction, Fourier Transform Infrared (FTIR), transmission electron microscopy (TEM), Mössbauer and magnetization measurements. The XRD pattern of CdFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The FTIR measurements between 400 and 4000 cm-1 indicate intrinsic cation vibration of the spinel structure. The Mössbauer spectra were recorded at 4 K and 300 K. The hyperfine fields appear to be highly sensitive on particle size. The evolution of the properties as a function of particle size is also presented.

Keywords: ferrite, nanoparticles, magnetization, Mössbauer

Procedia PDF Downloads 370
12432 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites

Authors: Engang Wang

Abstract:

The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.

Keywords: Cu-Ag composite, magnetic field, microstructure, solidification

Procedia PDF Downloads 193
12431 Effects of Magnetic Field on 4H-SiC P-N Junctions

Authors: Khimmatali Nomozovich Juraev

Abstract:

Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry.

Keywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics

Procedia PDF Downloads 62
12430 Synthesis, Characterization, and Properties Study of New Magnetic Materials

Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub

Abstract:

We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)

Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt

Procedia PDF Downloads 417
12429 Measurement Technologies for Advanced Characterization of Magnetic Materials Used in Electric Drives and Automotive Applications

Authors: Lukasz Mierczak, Patrick Denke, Piotr Klimczyk, Stefan Siebert

Abstract:

Due to the high complexity of the magnetization in electrical machines and influence of the manufacturing processes on the magnetic properties of their components, the assessment and prediction of hysteresis and eddy current losses has remained a challenge. In the design process of electric motors and generators, the power losses of stators and rotors are calculated based on the material supplier’s data from standard magnetic measurements. This type of data does not include the additional loss from non-sinusoidal multi-harmonic motor excitation nor the detrimental effects of residual stress remaining in the motor laminations after manufacturing processes, such as punching, housing shrink fitting and winding. Moreover, in production, considerable attention is given to the measurements of mechanical dimensions of stator and rotor cores, whereas verification of their magnetic properties is typically neglected, which can lead to inconsistent efficiency of assembled motors. Therefore, to enable a comprehensive characterization of motor materials and components, Brockhaus Measurements developed a range of in-line and offline measurement technologies for testing their magnetic properties under actual motor operating conditions. Multiple sets of experimental data were obtained to evaluate the influence of various factors, such as elevated temperature, applied and residual stress, and arbitrary magnetization on the magnetic properties of different grades of non-oriented steel. Measured power loss for tested samples and stator cores varied significantly, by more than 100%, comparing to standard measurement conditions. Quantitative effects of each of the applied measurement were analyzed. This research and applied Brockhaus measurement methodologies emphasized the requirement for advanced characterization of magnetic materials used in electric drives and automotive applications.

Keywords: magnetic materials, measurement technologies, permanent magnets, stator and rotor cores

Procedia PDF Downloads 122
12428 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature

Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim

Abstract:

Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.

Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder

Procedia PDF Downloads 121
12427 Magnetic Survey for the Delineation of Concrete Pillars in Geotechnical Investigation for Site Characterization

Authors: Nuraddeen Usman, Khiruddin Abdullah, Mohd Nawawi, Amin Khalil Ismail

Abstract:

A magnetic survey is carried out in order to locate the remains of construction items, specifically concrete pillars. The conventional Euler deconvolution technique can perform the task but it requires the use of fixed structural index (SI) and the construction items are made of materials with different shapes which require different SI (unknown). A Euler deconvolution technique that estimate background, horizontal coordinate (xo and yo), depth and structural index (SI) simultaneously is prepared and used for this task. The synthetic model study carried indicated the new methodology can give a good estimate of location and does not depend on magnetic latitude. For field data, both the total magnetic field and gradiometer reading had been collected simultaneously. The computed vertical derivatives and gradiometer readings are compared and they have shown good correlation signifying the effectiveness of the method. The filtering is carried out using automated procedure, analytic signal and other traditional techniques. The clustered depth solutions coincided with the high amplitude/values of analytic signal and these are the possible target positions of the concrete pillars being sought. The targets under investigation are interpreted to be located at the depth between 2.8 to 9.4 meters. More follow up survey is recommended as this mark the preliminary stage of the work.

Keywords: concrete pillar, magnetic survey, geotechnical investigation, Euler Deconvolution

Procedia PDF Downloads 234
12426 Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application

Authors: Shalini Rajput, Dinesh Mohan

Abstract:

Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment.

Keywords: nanoparticles, adsorption, iron oxide, nanotechnology

Procedia PDF Downloads 533
12425 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria

Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo

Abstract:

In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.

Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices

Procedia PDF Downloads 43
12424 A Hybrid Multi-Pole Fe₇₈Si₁₃B₉+FeSi₃ Soft Magnetic Core for Application in the Stators of the Low-Power Permanent Magnet Brushless Direct Current Motors

Authors: P. Zackiewicz, M. Hreczka, R. Kolano, A. Kolano-Burian

Abstract:

New types of materials applied as the stators in the Permanent Magnet Brushless Direct Current motors used in the heart supporting pumps are presented. The main focus of this work is the research on the fabrication of a hybrid nine-pole soft magnetic core consisting of a soft magnetic carrier ring with rectangular notches, made from the FeSi3 strip, and nine soft magnetic poles. This soft magnetic core is made in three stages: (a) preparation of the carrier rings from soft magnetic material with the lowest possible power losses and suitable stiffness, (b) preparation of trapezoidal soft magnetic poles from Metglas 2605 SA1 type ribbons, and (c) making durable connection between the poles and the carrier ring, capable of withstanding a four-times greater tearing force than that present during normal operation of the motor pump. All magnetic properties measurements were made using Remacomp C-1200 (Magnet Physik, Germany) and 450 Gaussometer (Lake Shore, USA) and the electrical characteristics were measured using laboratory generator DF1723009TC (NDN, Poland). Specific measurement techniques used to determine properties of the hybrid cores were presented. Obtained results allow developing the fabrication technology with an account of the intended application of these cores in the stators of the low-power PMBLDC motors used in implanted heart operation supporting pumps. The proposed measurement methodology is appropriate for assessing the quality of the stators.

Keywords: amorphous materials, heart supporting pump, PMBLDC motor, soft magnetic materials

Procedia PDF Downloads 183
12423 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China

Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan

Abstract:

The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.

Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure

Procedia PDF Downloads 439
12422 Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium

Authors: Ana Paula Mousinho, Ronaldo D. Mansano, Nelson Ordonez

Abstract:

Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system.

Keywords: CNTs forest, high density plasma deposition, high-aligned CNTs, nanomaterials

Procedia PDF Downloads 94
12421 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys

Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.

Abstract:

We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.

Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion

Procedia PDF Downloads 452
12420 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: free energy, magnetic anisotropy, magnetostriction, morphotropic phase boundary (MPB)

Procedia PDF Downloads 247
12419 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)

Authors: M. Kessi

Abstract:

We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.

Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force

Procedia PDF Downloads 150
12418 Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity

Authors: Muhammad Waqar Ashraf

Abstract:

The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water.

Keywords: magnetic treatment, saline water, hardness of water, removal of salinity

Procedia PDF Downloads 459
12417 Strong Antiferromagnetic Super Exchange in AgF2

Authors: Wojciech Grochala

Abstract:

AgF2 is an important two-dimensional antiferromagnet and an analogue of [CuO2]2– sheet. However, the strength of magnetic superexchange as well as magnetic dimensionality have not been explored before . Here we report our recent Raman and neutron scattering experiments which led to better understanding of the magnetic properties of the title compound. It turns out that intra-sheet magnetic superexchange constant reaches 70 meV, thus some 2/3 of the value measured for parent compounds of oxocuprate superconductors which is over 100 meV. The ratio of intra-to-inter-sheet superexchange constants is of the order of 102 rendering AgF2 a quasi-2D material, similar to the said oxocuprates. The quantum mechanical calculations reproduce the abovementioned values quite well and they point out to substantial covalence of the Ag–F bonding. After 3 decades of intense research on layered oxocuprates, AgF2 now stands as a second-to-none analogue of these fascinating systems. It remains to be seen whether this 012 parent compound may be doped in order to achieve superconductivity.

Keywords: antiferromagnets, superexchange, silver, fluorine

Procedia PDF Downloads 100
12416 Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: A. Abada, S. Hiadsi, T. Ouahrani, B. Amrani, K. Amara

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field.

Keywords: half-metallic ferromagnets, full Heusler alloys, magnetic properties, electronic properties

Procedia PDF Downloads 380
12415 Electrical Properties of Cement-Based Piezoelectric Nanoparticles

Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad

Abstract:

Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.

Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric

Procedia PDF Downloads 220
12414 Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties.

Keywords: magnetorheological elastomers, iron oxides, ionic liquids, dispersion

Procedia PDF Downloads 303
12413 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 293
12412 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 366