Search results for: spectrum response measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8673

Search results for: spectrum response measurement

8403 Stress and Marital Satisfaction of Parents to Children Diagnosed with Autism

Authors: Oren Shtayermman

Abstract:

The current investigation expended on research among parents caring for a child who is diagnosed with an autism spectrum disorder (ASD). An online web survey was used to collect data from 253 parents caring for a child with a diagnosis of ASD. Both parents reported on elevated levels of parental stress associated with caring for the child on the spectrum. In addition, lower levels of marital satisfaction were found in both parents. About 13% of the parents in the sample met the diagnostic criteria for Major Depressive Disorder and About 15% of the parents met the diagnostic criteria for Generalized Anxiety Disorder. Although the majority of the sample was females (94%) significant differences were found between males and females in relation to meeting the diagnostic criteria for Major Depressive Disorder and for Generalized Anxiety Disorder. Higher levels of stress were associated with higher number of Generalized Anxiety Disorder symptoms and higher number of Major Depressive Disorder symptoms. Findings from this study indicate how vulnerable parents and especially females are in relation to caring to a child diagnosed with ASD. Educational Objectives: At the conclusion of the paper, the readers should be able to: -Identify levels of stress and marital satisfaction among parents caring for a child diagnosed with autism spectrum disorder, -Recognize the impact of stress on the development of mental health issues, -Name the two most common mood and anxiety related disorders associated with caring for a child diagnosed with an autism spectrum disorder.

Keywords: autism, stress, parents, children

Procedia PDF Downloads 287
8402 Parent’s Preferences about Technology-Based Therapy for Children and Young People on the Autism Spectrum – a UK Survey

Authors: Athanasia Kouroupa, Karen Irvine, Sivana Mengoni, Shivani Sharma

Abstract:

Exploring parents’ preferences towards technology-based interventions for children on the autism spectrum can inform future research and support technology design. The study aimed to provide a comprehensive description of parents’ knowledge and preferences about innovative technology to support children on the autism spectrum. Survey data were collected from parents (n = 267) internationally. The survey included information about the use of conventional (e.g., smartphone, iPod, tablets) and non-conventional (e.g., virtual reality, robot) technologies. Parents appeared to prefer conventional technologies such as tablets and dislike non-conventional ones. They highlighted the positive contribution technology brought to the children’s lives during the pandemic. A few parents were equally concerned that the compulsory introduction of technology during the pandemic was associated with elongated time on devices. The data suggested that technology-based interventions are not widely known, need to be financially approachable and achieve a high standard of design to engage users.

Keywords: autism, intervention, preferences, technology

Procedia PDF Downloads 102
8401 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 228
8400 High Efficiency Electrolyte Lithium Battery and RF Characterization

Authors: Wei Quan, Liu Chao, Mohammed N. Afsar

Abstract:

The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by radio-frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40 oC to +150 oC and can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by capacitance bridge and inwave guide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.

Keywords: polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement

Procedia PDF Downloads 450
8399 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 116
8398 A Study on the Determinants of Earnings Response Coefficient in an Emerging Market

Authors: Bita Mashayekhi, Zeynab Lotfi Aghel

Abstract:

The determinants of Earnings Response Coefficient (ERC), including firm size, earnings growth, and earnings persistence are studied in this research. These determinants are supposed to be moderator variables that affect ERC and Return Response Coefficient. The research sample contains 82 Iranian listed companies in Tehran Stock Exchange (TSE) from 2001 to 2012. Gathered data have been processed by EVIEWS Software. Results show a significant positive relation between firm size and ERC, and also between earnings growth and ERC; however, there is no significant relation between earnings persistence and ERC. Also, the results show that ERC will be increased by firm size and earnings growth, but there is no relation between earnings persistence and ERC.

Keywords: earnings response coefficient (ERC), return response coefficient (RRC), firm size, earnings growth, earnings persistence

Procedia PDF Downloads 292
8397 Comparison of Parent’s Treatment and Education Priorities between Verbal and Non-Verbal Children with Autism Spectrum Disorder in Iranian Families

Authors: Elanz Alimi, Mehdi Ghanadzade

Abstract:

This current study compared the parents reported treatment and education priorities between verbal and nonverbal children with an autism spectrum disorder (ASD). Participants were 196 parents of 2 to 21-year-old (83 non-verbal and 113 verbal) children and adolescents with an ASD who completed questionnaires measuring parent’s treatment and education priorities, child’s educational and intervention programs and current child’s level of performance according to each skill. Results of this study indicated that parents of verbal children with autism spectrum disorder considered communication skills, community living skills and academic skills correspondingly as their highest intervention and education priorities and parents of non-verbal children with ASD reported communication skills, social relationship skills and self-care skills as the most significant priorities for their children. Findings show that for Iranian parents of both verbal and non-verbal children with ASD, communication skills are the most crucial treatment priority.

Keywords: autism, communication skills, Iran, parent’s priorities

Procedia PDF Downloads 184
8396 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: Janusz Kwaśniewski, Ireneusz Dominik, Krzysztof Lalik

Abstract:

The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: auto-oscillator, non-destructive testing, rock thickness measurement, geotechnic

Procedia PDF Downloads 349
8395 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.

Keywords: indoor positioning system, wireless sensor networks, measurement delay

Procedia PDF Downloads 442
8394 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils

Authors: Ákos Wolf, Richard P. Ray

Abstract:

Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils

Keywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity

Procedia PDF Downloads 226
8393 Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation

Authors: Péter Tanos, József Kovács, Angéla Anda, Gábor Várbíró, Sándor Molnár, István Gábor Hatvani

Abstract:

The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream.

Keywords: annual periodicity water quality, spatiotemporal variability of periodic behavior, Morlet wavelet spectrum analysis, River Tisza

Procedia PDF Downloads 309
8392 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center

Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini

Abstract:

We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.

Keywords: curriculum based measurement, precision teaching, writing skill, Italian learning center

Procedia PDF Downloads 104
8391 User Experience Measurement of User Interfaces

Authors: Mohammad Hashemi, John Herbert

Abstract:

Quantifying and measuring Quality of Experience (QoE) are important and difficult concerns in Human Computer Interaction (HCI). Quality of Service (QoS) and the actual User Interface (UI) of the application are both important contributors to the QoE of a user. This paper describes a framework that measures accurately the way a user uses the UI in order to model users' behaviours and profiles. It monitors the use of the mouse and use of UI elements with accurate time measurement. It does this in real-time and does so unobtrusively and efficiently allowing the user to work as normal with the application. This real-time accurate measurement of the user's interaction provides valuable data and insight into the use of the UI, and is also the basis for analysis of the user's QoE.

Keywords: user modelling, user interface experience, quality of experience, user experience, human and computer interaction

Procedia PDF Downloads 472
8390 The Effectiveness of Using Video Modeling Procedures on the ipad to Teach Play Skills Children with ASD

Authors: Esra Orum Cattik

Abstract:

This study evaluated the effects of using video modeling procedures on the iPad to teach play skills to children with autism spectrum disorders. A male student with autism spectrum disorders participated in this study. A multiple baseline-across-skills single-subject design was used to evaluate the effects of using video modeling procedures on the iPad. During baseline, no prompts were presented to participants. In the intervention phase, the teacher gave video model on iPad to the first skill and asked play with toys for him. When the first play skill completed the second play skill began intervention. This procedure continued till all three play skill completed intervention. Finally, the participant learned all three play skills to use video modeling presented on the iPad. Based upon findings of this study, suggestions have been made to future researches.

Keywords: autism spectrum disorders, play, play skills, video modeling, single subject design

Procedia PDF Downloads 381
8389 Teaching Practitioners to Use Technology to Support and Instruct Students with Autism Spectrum Disorders

Authors: Nicole Nicholson, Anne Spillane

Abstract:

The purpose of this quantitative, descriptive analysis was to determine the success of a post-graduate new teacher education program, designed to teach educators the knowledge and skills necessary to use technology in the classroom, improve the ability to communicate with stakeholders, and implement EBPs and UDL principles into instruction for students with ASD (Autism Spectrum Disorders ). The success of candidates (n=20) in the program provided evidence as to how candidates were effectively able to use technology to create meaningful learning opportunities and implement EBPs for individuals with ASD. ≥90% of participants achieved the following competencies: podcast creation; technology used to share information about assistive technology; and created a resource website on ASD (including information on EBPs, local and national support groups, ASD characteristics, and the latest research on ASD). 59% of students successfully created animation. Results of the analysis indicated that the teacher education program was successful in teaching candidates desired competencies during its first year of implementation.

Keywords: autism spectrum disorders, ASD, evidence based practices, EBP, universal design for learning, UDL

Procedia PDF Downloads 131
8388 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics

Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki

Abstract:

The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.

Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio

Procedia PDF Downloads 144
8387 Flux-Gate vs. Anisotropic Magneto Resistance Magnetic Sensors Characteristics in Closed-Loop Operation

Authors: Neoclis Hadjigeorgiou, Spyridon Angelopoulos, Evangelos V. Hristoforou, Paul P. Sotiriadis

Abstract:

The increasing demand for accurate and reliable magnetic measurements over the past decades has paved the way for the development of different types of magnetic sensing systems as well as of more advanced measurement techniques. Anisotropic Magneto Resistance (AMR) sensors have emerged as a promising solution for applications requiring high resolution, providing an ideal balance between performance and cost. However, certain issues of AMR sensors such as non-linear response and measurement noise are rarely discussed in the relevant literature. In this work, an analog closed loop compensation system is proposed, developed and tested as a means to eliminate the non-linearity of AMR response, reduce the 1/f noise and enhance the sensitivity of magnetic sensor. Additional performance aspects, such as cross-axis and hysteresis effects are also examined. This system was analyzed using an analytical model and a P-Spice model, considering both the sensor itself as well as the accompanying electronic circuitry. In addition, a commercial closed loop architecture Flux-Gate sensor (calibrated and certified), has been used for comparison purposes. Three different experimental setups have been constructed for the purposes of this work, each one utilized for DC magnetic field measurements, AC magnetic field measurements and Noise density measurements respectively. The DC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to calibrate and characterize the system under consideration. A high-accuracy DC power supply has been used for providing the operating current to the Helmholtz coils. The results were recorded by a multichannel voltmeter The AC magnetic field measurements have been conducted in laboratory environment employing a cubic Helmholtz coil setup in order to examine the effective bandwidth not only of the proposed system but also for the Flux-Gate sensor. A voltage controlled current source driven by a function generator has been utilized for the Helmholtz coil excitation. The result was observed by the oscilloscope. The third experimental apparatus incorporated an AC magnetic shielding construction composed of several layers of electric steel that had been demagnetized prior to the experimental process. Each sensor was placed alone and the response was captured by the oscilloscope. The preliminary experimental results indicate that closed loop AMR response presented a maximum deviation of 0.36% with respect to the ideal linear response, while the corresponding values for the open loop AMR system and the Fluxgate sensor reached 2% and 0.01% respectively. Moreover, the noise density of the proposed close loop AMR sensor system remained almost as low as the noise density of the AMR sensor itself, yet considerably higher than that of the Flux-Gate sensor. All relevant numerical data are presented in the paper.

Keywords: AMR sensor, chopper, closed loop, electronic noise, magnetic noise, memory effects, flux-gate sensor, linearity improvement, sensitivity improvement

Procedia PDF Downloads 399
8386 Improved Estimation Strategies of Sensitive Characteristics Using Scrambled Response Techniques in Successive Sampling

Authors: S. Suman, G. N. Singh

Abstract:

This research work is an effort to analyse the consequences of scrambled response technique to estimate the current population mean in two-occasion successive sampling when the characteristic of interest is sensitive in nature. The generalized estimation procedures have been proposed using sensitive auxiliary variables under additive and multiplicative scramble models. The properties of resultant estimators have been deeply examined. Simulation, as well as empirical studies, are carried out to evaluate the performances of the proposed estimators with respect to other competent estimators. The results of our studies suggest that the proposed estimation procedures are highly effective under the presence of non-response situation. The result of this study also suggests that additive scrambled response model is a better choice in the perspective of cost of the survey and privacy of the respondents.

Keywords: scrambled response, sensitive characteristic, successive sampling, optimum replacement strategy

Procedia PDF Downloads 149
8385 Development of Quality Assessment Tool to Gauge Fire Response Activities of Emergency Personnel in Denmark

Authors: Jennifer E. Lynette

Abstract:

The purpose of this study is to develop a nation-wide assessment tool to gauge the quality and efficiency of response activities by emergency personnel to fires in Denmark. Current fire incident reports lack detailed information that can lead to breakthroughs in research and improve emergency response efforts. Information generated from the report database is analyzed and assessed for efficiency and quality. By utilizing information collection gaps in the incident reports, an improved, indepth, and streamlined quality gauging system is developed for use by fire brigades. This study pinpoints previously unrecorded factors involved in the response phases of a fire. Variables are recorded and ranked based on their influence to event outcome. By assessing and measuring these data points, quality standards are developed. These quality standards include details of the response phase previously overlooked which individually and cumulatively impact the overall success of a fire response effort. Through the application of this tool and implementation of associated quality standards at Denmark’s fire brigades, there is potential to increase efficiency and quality in the preparedness and response phases, thereby saving additional lives, property, and resources.

Keywords: emergency management, fire, preparedness, quality standards, response

Procedia PDF Downloads 294
8384 Design of Real Time Early Response Systems for Natural Disaster Management Based on Automation and Control Technologies

Authors: C. Pacheco, A. Cipriano

Abstract:

A new concept of response system is proposed for filling the gap that exists in reducing vulnerability during immediate response to natural disasters. Real Time Early Response Systems (RTERSs) incorporate real time information as feedback data for closing control loop and for generating real time situation assessment. A review of the state of the art works that fit the concept of RTERS is presented, and it is found that they are mainly focused on manmade disasters. At the same time, in response phase of natural disaster management many works are involved in creating early warning systems, but just few efforts have been put on deciding what to do once an alarm is activated. In this context a RTERS arises as a useful tool for supporting people in their decision making process during natural disasters after an event is detected, and also as an innovative context for applying well-known automation technologies and automatic control concepts and tools.

Keywords: disaster management, emergency response system, natural disasters, real time

Procedia PDF Downloads 419
8383 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test

Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca

Abstract:

Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.

Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow

Procedia PDF Downloads 277
8382 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System

Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio

Abstract:

A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.

Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel

Procedia PDF Downloads 627
8381 Time Parameter Based for the Detection of Catastrophic Faults in Analog Circuits

Authors: Arabi Abderrazak, Bourouba Nacerdine, Ayad Mouloud, Belaout Abdeslam

Abstract:

In this paper, a new test technique of analog circuits using time mode simulation is proposed for the single catastrophic faults detection in analog circuits. This test process is performed to overcome the problem of catastrophic faults being escaped in a DC mode test applied to the inverter amplifier in previous research works. The circuit under test is a second-order low pass filter constructed around this type of amplifier but performing a function that differs from that of the previous test. The test approach performed in this work is based on two key- elements where the first one concerns the unique square pulse signal selected as an input vector test signal to stimulate the fault effect at the circuit output response. The second element is the filter response conversion to a square pulses sequence obtained from an analog comparator. This signal conversion is achieved through a fixed reference threshold voltage of this comparison circuit. The measurement of the three first response signal pulses durations is regarded as fault effect detection parameter on one hand, and as a fault signature helping to hence fully establish an analog circuit fault diagnosis on another hand. The results obtained so far are very promising since the approach has lifted up the fault coverage ratio in both modes to over 90% and has revealed the harmful side of faults that has been masked in a DC mode test.

Keywords: analog circuits, analog faults diagnosis, catastrophic faults, fault detection

Procedia PDF Downloads 414
8380 Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes

Authors: Seyed Sadegh Naseralavi, Mohsen Khatibinia

Abstract:

In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems.

Keywords: basic modal displacements, earthquake, optimization, spectrum

Procedia PDF Downloads 335
8379 Role of Interleukin-36 in Response to Pseudomonas aeruginosa Infection

Authors: Muslim Idan Mohsin, Mohammed Jasim Al-Shamarti, Rusul Idan Mohsin, Ali A. Majeed

Abstract:

One of the causative agents of the lower respiratory tract (LRT) is Pseudomonas aeruginosa, which can lead to severe infection associated with a lung infection. There are many cytokines that are secreted in response to bacterial infection, in particular interleukin IL-36 cytokine in response to P. aeruginosa infection. The involvement of IL-36 in the P. aeruginosa infection could be a clue to find a specific way for treatments of different inflammatory and degenerative lung diseases. IL36 promotes primary immune response via binding to the IL-36 receptor (IL-36R). Indeed, an overactivity of IL-36 might be an initiating factor for many immunopathologic sceneries in pneumonia. Here we demonstrate if the IL-36 cytokine increases in response P. aeruginosa infection that is isolated from lower respiratory tract infection (LRT). We demonstrated that IL-36 expression significantly unregulated in human lung epithelial (A549) cells after infected by P. aeruginosa at mRNA level.

Keywords: IL36, Pseudomonas aeruginosa, LRT infection, A549 cells

Procedia PDF Downloads 195
8378 Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience

Authors: C. Li, G. Coates, N. Johnson, M. Mc Guinness

Abstract:

In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience.

Keywords: ABM, flood response, SMEs, business continuity

Procedia PDF Downloads 280
8377 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 116
8376 Adaptation Mechanism and Planning Response to Resiliency Shrinking of Small Towns Based on Complex Adaptive System by Taking Wuhan as an Example

Authors: Yanqun Li, Hong Geng

Abstract:

The rapid urbanization process taking big cities as the main body leads to the unequal configuration of urban and rural areas in the aspects of land supply, industrial division of labor, service supply and space allocation, and induces the shrinking characterization of service energy, industrial system and population vitality in small towns. As an important spatial unit in the spectrum of urbanization that serves, connects and couples urban and rural areas, the shrinking phenomenon faced by small towns has an important influence on the healthy development of urbanization. Based on the census of small towns in Wuhan metropolitan area, we have found that the shrinking of small towns is a passive contraction of elastic tension under the squeeze in cities. Once affected by the external forces such as policy regulation, planning guidance, and population return, small towns will achieve expansion and growth. Based on the theory of complex adaptive systems, this paper comprehensively constructs the development index evaluation system of small towns from five aspects of population, economy, space, society and ecology, measures the shrinking level of small towns, further analyzes the shrinking characteristics of small towns, and identifies whether the shrinking is elastic or not. And then this paper measures the resilience ability index of small town contract from the above-mentioned five aspects. Finally, this paper proposes an adaptive mechanism of urban-rural interaction evolution under fine division of labor to response the passive shrinking in small towns of Wuhan. Based on the above, the paper creatively puts forward the planning response measures of the small towns on the aspects of spatial layout, function orientation and service support, which can provide reference for other regions.

Keywords: complex adaptive systems, resiliency shrinking, adaptation mechanism, planning response

Procedia PDF Downloads 89
8375 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program

Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song

Abstract:

Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory

Procedia PDF Downloads 417
8374 Uncertainty Assessment in Building Energy Performance

Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud

Abstract:

The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.

Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method

Procedia PDF Downloads 430