Search results for: solute transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1894

Search results for: solute transport

274 Mapping Actors in Sao Paulo's Urban Development Policies: Interests at Stake in the Challenge to Sustainability

Authors: A. G. Back

Abstract:

In the context of global climate change, extreme weather events are increasingly intense and frequent, challenging the adaptability of urban space. In this sense, urban planning is a relevant instrument for addressing, in a systemic manner, various sectoral policies capable of linking the urban agenda to the reduction of social and environmental risks. The Master Plan of the Municipality of Sao Paulo, 2014, presents innovations capable of promoting the transition to sustainability in the urban space. Among such innovations, the following stand out: i) promotion of density in the axes of mass transport involving mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies, including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, long-term implementation involves distributive conflicts and may change in different political, economic, and social contexts over time. Thus, the central objective of this paper is to identify which factors limit or support the implementation of these policies. That is, to map the challenges and interests of converging and/or divergent urban actors in the sustainable urban development agenda and what resources they mobilize to support or limit these actions in the city of Sao Paulo. Recent proposals to amend the urban zoning law undermine the implementation of the Master Plan guidelines. In this context, three interest groups with different views of the city come into dispute: the real estate market, upper middle class neighborhood associations ('not in my backyard' movements), and social housing rights movements. This paper surveys the different interests and visions of these groups taking into account their convergences, or not, with the principles of sustainable urban development. This approach seeks to fill a gap in the international literature on the causes that underpin or hinder the continued implementation of policies aimed at the transition to urban sustainability in the medium and long term.

Keywords: adaptation, ecosystem-based adaptation, interest groups, urban planning, urban transition to sustainability

Procedia PDF Downloads 90
273 Protective Role of Curcumin against Ionising Radiation of Gamma Ray

Authors: Turban Kar, Maitree Bhattacharyya

Abstract:

Curcumin, a dietary antioxidant has been identified as a wonder molecule to possess therapeutic properties protecting the cellular macromolecules from oxidative damage. In our experimental study, we have explored the effectiveness of curcumin in protecting the structural paradigm of Human Serum Albumin (HSA) when exposed to gamma irradiation. HSA, being an important transport protein of the circulatory system, is involved in binding of variety of metabolites, drugs, dyes and fatty acids due to the presence of hydrophobic pockets inside the structure. HSA is also actively involved in the transportation of drugs and metabolites to their targets, because of its long half-life and regulation of osmotic blood pressure. Gamma rays, in its increasing concentration, results in structural alteration of the protein and superoxide radical generation. Curcumin, on the other hand, mitigates the damage, which has been evidenced in the following experiments. Our study explores the possibility for protection by curcumin during the molecular and conformational changes of HSA when exposed to gamma irradiation. We used a combination of spectroscopic methods to probe the conformational ensemble of the irradiated HSA and finally evaluated the extent of restoration by curcumin. SDS - PAGE indicated the formation of cross linked aggregates as a consequence of increasing exposure of gamma radiation. CD and FTIR spectroscopy inferred significant decrease in alpha helix content of HSA from 57% to 15% with increasing radiation doses. Steady state and time resolved fluorescence studies complemented the spectroscopic measurements when lifetime decay was significantly reduced from 6.35 ns to 0.37 ns. Hydrophobic and bityrosine study showed the effectiveness of curcumin for protection against radiation induced free radical generation. Moreover, bityrosine and hydrophobic profiling of gamma irradiated HSA in presence and absence of curcumin provided light on the formation of ROS species generation and the protective (magical) role of curcumin. The molecular mechanism of curcumin protection to HSA from gamma irradiation is yet unknown, though a possible explanation has been proposed in this work using Thioflavin T assay. It was elucidated, that when HSA is irradiated at low dose of gamma radiation in presence of curcumin, it is capable of retaining the native characteristic properties to a greater extent indicating stabilization of molecular structure. Thus, curcumin may be utilized as a therapeutic strategy to protect cellular proteins.

Keywords: Bityrosine content, conformational change, curcumin, gamma radiation, human serum albumin

Procedia PDF Downloads 126
272 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems

Authors: Armando Cartenì

Abstract:

Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.

Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning

Procedia PDF Downloads 183
271 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 114
270 Co-Development of an Assisted Manual Harvesting Tool for Peach Palm That Avoids the Harvest in Heights

Authors: Mauricio Quintero Angel, Alexander Pereira, Selene Alarcón

Abstract:

One of the elements of greatest importance in agricultural production is the harvesting; an activity associated to different occupational health risks such as harvesting in high altitudes, the transport of heavy materials and the application of excessive muscle strain that leads to muscular-bone disorders. Therefore, there is an urgent necessity to improve and validate interventions to reduce exposition and risk to harvesters. This article has the objective of describing the co-development under the ergonomic analysis framework of an assisted manual harvesting tool for peach palm oriented to reduce the risk of death and accidents as it avoid the harvest in heights. The peach palm is a palm tree that is cultivated in Colombia, Perú, Brasil, Costa Rica, among others and that reaches heights of over 20 m, with stipes covered with spines. The fruits are drupes of variable size. For the harvesting of peach palm, in Colombia farmers use the “Marota” or “Climber”, a tool in a closed X shape built in wood, that has two supports adjusted at the stipe, that elevate alternately until reaching a point high enough to grab the bunch that is brought down using a rope. An activity of high risk since it is done at a high altitude without any type of protection and safety measures. The Marota is alternated with a rod, which as variable height between 5 and 12 Meters with a harness system at one end to hold the bunch that is lowered with the whole system (bamboo bunch). The rod is used from the ground or from the Marota in height. As an alternative to traditional tools, the Bajachonta was co-developed with farmers, a tool that employs a traditional bamboo hook system with modifications, to be able to hold it with a rope that passes through a pulley. Once the bunch is hitched, the hook system is detached and this stays attached to the peduncle of the palm tree, afterwards through a pulling force being exerted towards the ground by tensioning the rope, the bunch comes loose to be taken down using a rope and the pulley system to the ground, reducing the risk and efforts in the operation. The bajachonta was evaluated in tree productive zones of Colombia, with innovative farmers, were the adoption is highly probable, with some modifications to improve its efficiency and effectiveness, keeping in mind that the farmers perceive in it an advantage in the reduction of death and accidents by not having to harvest in heights.

Keywords: assisted harvesting, ergonomics, harvesting in high altitudes, participative design, peach palm

Procedia PDF Downloads 379
269 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise

Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez

Abstract:

Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.

Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability

Procedia PDF Downloads 112
268 The Application of Animal Welfare Certification System for Farm Animal in South Korea

Authors: Ahlyum Mun, Ji-Young Moon, Moon-Seok Yoon, Dong-Jin Baek, Doo-Seok Seo, Oun-Kyong Moon

Abstract:

There is a growing public concern over the standards of farm animal welfare, with higher standards of food safety. In addition, the recent low incidence of Avian Influenza in laying hens among certificated farms is receiving attention. In this study, we introduce animal welfare systems covering the rearing, transport and slaughter of farm animals in South Korea. The concepts of animal welfare farm certification are based on ensuring the five freedoms of animal. The animal welfare is also achieved by observing the condition of environment including shelter and resting area, feeding and water and the care for the animal health. The certification of farm animal welfare is handled by the Animal Protection & Welfare Division of Animal and Plant Quarantine Agency (APQA). Following the full amendment of Animal Protection Law in 2011, animal welfare farm certification program has been implemented since 2012. The certification system has expanded to cover laying hen, swine, broiler, beef cattle and dairy cow, goat and duck farms. Livestock farmers who want to be certified must apply for certification at the APQA. Upon receipt of the application, the APQA notifies the applicant of the detailed schedule of the on-site examination after reviewing the document and conducts the on-site inspection according to the evaluation criteria of the welfare standard. If the on-site audit results meet the certification criteria, APQA issues a certificate. The production process of certified farms is inspected at least once a year for follow-up management. As of 2017, a total of 145 farms have been certified (95 laying hen farms, 12 swine farms, 30 broiler farms and 8 dairy cow farms). In addition, animal welfare transportation vehicles and slaughterhouses have been designated since 2013 and currently 6 slaughterhouses have been certified. Animal Protection Law has been amended so that animal welfare certification marks can be affixed only to livestock products produced by animal welfare farms, transported through animal welfare vehicles and slaughtered at animal welfare slaughterhouses. The whole process including rearing–transportation- slaughtering completes the farm animal welfare system. APQA established its second 5-year animal welfare plan (2014-2019) that includes setting a minimum standard of animal welfare applicable to all livestock farms, transportation vehicles and slaughterhouses. In accordance with this plan, we will promote the farm animal welfare policy in order to truly advance the Korean livestock industry.

Keywords: animal welfare, farm animal, certification system, South Korea

Procedia PDF Downloads 367
267 Socioeconomic Burden of a Diagnosis of Cervical Cancer in Women in Rural Uganda: Findings from a Phenomenological Study

Authors: Germans Natuhwera, Peter Ellis, Acuda Wilson, Anne Merriman, Martha Rabwoni

Abstract:

Objective: The aim of the study was to diagnose the socio-economic burden and impact of a diagnosis of cervical cancer (CC) in rural women in the context of low-resourced country Uganda, using a phenomenological enquiry. Methods: This was a multi-site phenomenological inquiry, conducted at three hospice settings; Mobile Hospice Mbarara in southwestern, Little Hospice Hoima in Western, and Hospice Africa Uganda Kampala in central Uganda. A purposive sample of women with a histologically confirmed diagnosis of CC was recruited. Data was collected using open-ended audio-recorded interviews conducted in the native languages of participants. Interviews were transcribed verbatim in English, and Braun and Clarke’s (2019) framework of thematic analysis was used. Results: 13 women with a mean age of 49.2 and age range 29-71 participated in the study. All participants were of low socioeconomic status. The majority (84.6%) had advanced disease at diagnosis. A fuller reading of transcripts produced four major themes clustered under; (1) socioeconomic characteristics of women, (2) impact of CC on women’s relationships, (3) disrupted and impaired activities of daily living (ADLs), and (4) economic disruptions. Conclusions: A diagnosis of CC introduces significant socio-economic disruptions in a woman’s and her family’s life. CC causes disability, impairs the woman and her family’s productivity hence exacerbating levels of poverty in the home. High and expensive out-of-pocket expenditure on treatment, investigations, and transport costs further compound the socio-economic burden. Decentralizing cancer care services to regional centers, scaling up screening services, subsidizing costs of cancer care services, or making cervical cancer care treatment free of charge, strengthening monitoring mechanisms in public facilities to curb the vice of healthcare workers soliciting bribes from patients, increased mass awareness campaigns about cancer, training more healthcare professionals in cancer investigation and management, and palliative care, and introducing an introductory course on gynecologic cancers into all health training institutions are recommended.

Keywords: activities of daily living, cervical cancer, out-of-pocket, expenditure, phenomenology, socioeconomic

Procedia PDF Downloads 172
266 The Use of Geographic Information System in Spatial Location of Waste Collection Points and the Attendant Impacts in Bida Urban Centre, Nigeria

Authors: Daramola Japheth, Tabiti S. Tabiti, Daramola Elizabeth Lara, Hussaini Yusuf Atulukwu

Abstract:

Bida urban centre is faced with solid waste management problems which are evident in the processes of waste generation, onsite storage, collection, transfer and transport, processing and disposal of solid waste. As a result of this the urban centre is defaced with litters of garbage and offensive odours due to indiscriminate dumping of refuse within the neighborhood. The partial removal of the fuel subsidy by the Federal Government in January 2012 leads to the formation of Subsidy Reinvestment Programmes (SURE-P), the Federal Government’s share is 41 per cent of the savings while the States and Local Government shared the remaining 59 percent. The SURE-P Committee in carrying out the mandate entrusted upon it by the President by identifying few critical infrastructure and social Safety nets that will ameliorate the sufferings of Nigerians. Waste disposal programme as an aspect of Solid waste management is one of the areas of focus for Niger State SURE-programmes incorporated under Niger State Environmental Protection Agency. The emergence of this programme as related to waste management in Bida has left behind a huge refuse spots along major corridors leading to a serious state of mess. Major roads within the LGA is now turned to dumping site, thereby obstructing traffic movements, while the aesthetic nature of the town became something else with offensive odours all over. This paper however wishes to underscore the use of geographical Information System in identifying solid waste sports towards effective solid waste management in the Bida urban centre. The paper examined the spatial location of dumping points and its impact on the environment. Hand held Global Position System was use to pick the dumping points location; where a total number of 91 dumping points collected were uploaded to ArcGis 10.2 for analysis. Interview method was used to derive information from households living near the dumping site. It was discovered that the people now have to cope with offensive odours, rodents invasion, dog and cats coming around the house as a result of inadequate and in prompt collection of waste around the neighborhood. The researchers hereby recommend that more points needs to be created with prompt collections of waste within the neighborhood by the necessary SURE - P agencies.

Keywords: dumping site, neighborhood, refuse, waste

Procedia PDF Downloads 501
265 Evaluation of Diagnostic Values of Culture, Rapid Urease Test, and Histopathology in the Diagnosis of Helicobacter pylori Infection and in vitro Effects of Various Antimicrobials against Helicobacter pylori

Authors: Recep Kesli, Huseyin Bilgin, Yasar Unlu, Gokhan Gungor

Abstract:

Aim: The aim of this study, was to investigate the presence of Helicobacter pylori (H. pylori) infection by culture, histology, and RUT (Rapid Urease Test) in gastric antrum biopsy samples taken from patients presented with dyspeptic complaints and to determine resistance rates of amoxicillin, clarithromycin, levofloxacin and metronidazole against the H. pylori strains by E-test. Material and Methods: A total of 278 patients who admitted to Konya Education and Research Hospital Department of Gastroenterology with dyspeptic complaints, between January 2011-July 2013, were included in the study. Microbiological and histopathological examinations of biopsy specimens taken from antrum and corpus regions were performed. The presence of H. pylori in biopsy samples was investigated by culture (Portagerm pylori-PORT PYL, Pylori agar-PYL, GENbox microaer, bioMerieux, France), histology (Giemsa, Hematoxylin and Eosin staining), and RUT(CLOtest, Cimberly-Clark, USA). Antimicrobial resistance of isolates against amoxicillin, clarithromycin, levofloxacin, and metronidazole was determined by E-test method (bioMerieux, France). As a gold standard in the diagnosis of H. pylori; it was accepted that the culture method alone was positive or both histology and RUT were positive together. Sensitivity and specificity for histology and RUT were calculated by taking the culture as a gold standard. Sensitivity and specificity for culture were also calculated by taking the co-positivity of both histology and RUT as a gold standard. Results: H. pylori was detected in 140 of 278 of patients with culture and 174 of 278 of patients with histology in the study. H. pylori positivity was also found in 191 patients with RUT. According to the gold standard criteria, a false negative result was found in 39 cases by culture method, 17 cases by histology, and 8 cases by RUT. Sensitivity and specificity of the culture, histology, and RUT methods of the patients were 76.5 % and 88.3 %, 87.8 % and 63 %, 94.2 % and 57.2 %, respectively. Antibiotic resistance was investigated by E-test in 140 H. pylori strains isolated from culture. The resistance rates of H. pylori strains to the amoxicillin, clarithromycin, levofloxacin, and metronidazole was detected as 9 (6.4 %), 22 (15.7 %), 17 (12.1 %), 57 (40.7 %), respectively. Conclusion: In our study, RUT was found to be the most sensitive, culture was the most specific test between culture, histology, and RUT methods. Although we detected the specificity of the culture method as high, its sensitivity was found to be quite low compared to other methods. The low sensitivity of H. pylori culture may be caused by the factors affect the chances of direct isolation such as spoild bacterium, difficult-to-breed microorganism, clinical sample retrieval, and transport conditions.

Keywords: antimicrobial resistance, culture, histology, H. pylori, RUT

Procedia PDF Downloads 141
264 Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy

Authors: Begum Rokeya, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain, A. Rahman

Abstract:

Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

Keywords: Arsenic Exposure, Dyslipidemia, Gestational Diabetes Mellitus, Serum lipid profile

Procedia PDF Downloads 95
263 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs

Authors: Lin Zhao, Hanqiao Jiang, Junjian Li

Abstract:

Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.

Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation

Procedia PDF Downloads 108
262 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav

Abstract:

Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: herbal gel, dental care, ambient conditions, commercial scale

Procedia PDF Downloads 411
261 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 390
260 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Alberto Campisano, Roberto Bertilotti, Fabien Riou

Abstract:

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understanding its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grain-size) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Keywords: bed-load evolution, combined sewer systems, flushing efficiency, sediments transport

Procedia PDF Downloads 375
259 Decision-Making Process Based on Game Theory in the Process of Urban Transformation

Authors: Cemil Akcay, Goksun Yerlikaya

Abstract:

Buildings are the living spaces of people with an active role in every aspect of life in today's world. While some structures have survived from the early ages, most of the buildings that completed their lifetime have not transported to the present day. Nowadays, buildings that do not meet the social, economic, and safety requirements of the age return to life with a transformation process. This transformation is called urban transformation. Urban transformation is the renewal of the areas with a risk of disaster and the technological infrastructure required by the structure. The transformation aims to prevent damage to earthquakes and other disasters by rebuilding buildings that have completed their non-earthquake-resistant economic life. It is essential to decide on other issues related to conversion and transformation in places where most of the building stock should transform into the first-degree earthquake belt, such as Istanbul. In urban transformation, property owners, local authority, and contractor must deal at a common point. Considering that hundreds of thousands of property owners are sometimes in the areas of transformation, it is evident how difficult it is to make the deal and decide. For the optimization of these decisions, the use of game theory is foreseeing. The main problem in this study is that the urban transformation is carried out in place, or the building or buildings are transport to a different location. There are many stakeholders in the Istanbul University Cerrahpaşa Medical Faculty Campus, which is planned to be carried out in the process of urban transformation, was tried to solve the game theory applications. An analysis of the decisions given on a real urban transformation project and the logical suitability of decisions taken without the use of game theory were also supervised using game theory. In each step of this study, many decision-makers are classifying according to a specific logical sequence, and in the game trees that emerged as a result of this classification, Nash balances were tried to observe, and optimum decisions were determined. All decisions taken for this project have been subjected to two significant differentiated comparisons using game theory, and as decisions are taken without the use of game theory, and according to the results, solutions for the decision phase of the urban transformation process introduced. The game theory model developed from beginning to the end of the urban transformation process, particularly as a solution to the difficulty of making rational decisions in large-scale projects with many participants in the decision-making process. The use of a decision-making mechanism can provide an optimum answer to the demands of the stakeholders. In today's world for the construction sector, it is also seeing that the game theory is a non-surprising consequence of the fact that it is the most critical issues of planning and making the right decision in future years.

Keywords: urban transformation, the game theory, decision making, multi-actor project

Procedia PDF Downloads 102
258 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 303
257 Development and Structural Characterization of a Snack Food with Added Type 4 Extruded Resistant Starch

Authors: Alberto A. Escobar Puentes, G. Adriana García, Luis F. Cuevas G., Alejandro P. Zepeda, Fernando B. Martínez, Susana A. Rincón

Abstract:

Snack foods are usually classified as ‘junk food’ because have little nutritional value. However, due to the increase on the demand and third generation (3G) snacks market, low price and easy to prepare, can be considered as carriers of compounds with certain nutritional value. Resistant starch (RS) is classified as a prebiotic fiber it helps to control metabolic problems and has anti-cancer colon properties. The active compound can be developed by chemical cross-linking of starch with phosphate salts to obtain a type 4 resistant starch (RS4). The chemical reaction can be achieved by extrusion, a process widely used to produce snack foods, since it's versatile and a low-cost procedure. Starch is the major ingredient for snacks 3G manufacture, and the seeds of sorghum contain high levels of starch (70%), the most drought-tolerant gluten-free cereal. Due to this, the aim of this research was to develop a snack (3G), with RS4 in optimal conditions extrusion (previously determined) from sorghum starch, and carry on a sensory, chemically and structural characterization. A sample (200 g) of sorghum starch was conditioned with 4% sodium trimetaphosphate/ sodium tripolyphosphate (99:1) and set to 28.5% of moisture content. Then, the sample was processed in a single screw extruder equipped with rectangular die. The inlet, transport and output temperatures were 60°C, 134°C and 70°C, respectively. The resulting pellets were expanded in a microwave oven. The expansion index (EI), penetration force (PF) and sensory analysis were evaluated in the expanded pellets. The pellets were milled to obtain flour and RS content, degree of substitution (DS), and percentage of phosphorus (% P) were measured. Spectroscopy [Fourier Transform Infrared (FTIR)], X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis were performed in order to determine structural changes after the process. The results in 3G were as follows: RS, 17.14 ± 0.29%; EI, 5.66 ± 0.35 and PF, 5.73 ± 0.15 (N). Groups of phosphate were identified in the starch molecule by FTIR: DS, 0.024 ± 0.003 and %P, 0.35±0.15 [values permitted as food additives (<4 %P)]. In this work an increase of the gelatinization temperature after the crosslinking of starch was detected; the loss of granular and vapor bubbles after expansion were observed by SEM; By using X-ray diffraction, loss of crystallinity was observed after extrusion process. Finally, a snack (3G) was obtained with RS4 developed by extrusion technology. The sorghum starch was efficient for snack 3G production.

Keywords: extrusion, resistant starch, snack (3G), Sorghum

Procedia PDF Downloads 280
256 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 104
255 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case

Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz

Abstract:

The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.

Keywords: catalyst, upgrading, aquathermolysis, steam

Procedia PDF Downloads 83
254 Transportation and Urban Land-Use System for the Sustainability of Cities, a Case Study of Muscat

Authors: Bader Eddin Al Asali, N. Srinivasa Reddy

Abstract:

Cities are dynamic in nature and are characterized by concentration of people, infrastructure, services and markets, which offer opportunities for production and consumption. Often growth and development in urban areas is not systematic, and is directed by number of factors like natural growth, land prices, housing availability, job locations-the central business district (CBD’s), transportation routes, distribution of resources, geographical boundaries, administrative policies, etc. One sided spatial and geographical development in cities leads to the unequal spatial distribution of population and jobs, resulting in high transportation activity. City development can be measured by the parameters such as urban size, urban form, urban shape, and urban structure. Urban Size is the city size and defined by the population of the city, and urban form is the location and size of the economic activity (CBD) over the geographical space. Urban shape is the geometrical shape of the city over which the distribution of population and economic activity occupied. And Urban Structure is the transport network within which the population and activity centers are connected by hierarchy of roads. Among the urban land-use systems transportation plays significant role and is one of the largest energy consuming sector. Transportation interaction among the land uses is measured in Passenger-Km and mean trip length, and is often used as a proxy for measurement of energy consumption in transportation sector. Among the trips generated in cities, work trips constitute more than 70 percent. Work trips are originated from the place of residence and destination to the place of employment. To understand the role of urban parameters on transportation interaction, theoretical cities of different size and urban specifications are generated through building block exercise using a specially developed interactive C++ programme and land use transportation modeling is carried. The land-use transportation modeling exercise helps in understanding the role of urban parameters and also to classify the cities for their urban form, structure, and shape. Muscat the capital city of Oman underwent rapid urbanization over the last four decades is taken as a case study for its classification. Also, a pilot survey is carried to capture urban travel characteristics. Analysis of land-use transportation modeling with field data classified Muscat as a linear city with polycentric CBD. Conclusions are drawn suggestion are given for policy making for the sustainability of Muscat City.

Keywords: land-use transportation, transportation modeling urban form, urban structure, urban rule parameters

Procedia PDF Downloads 244
253 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 152
252 Basotho Cultural Shift: The Role of Dress in the Shift

Authors: Papali Elizabeth Maqalika

Abstract:

Introduction: Dress is used daily and can be used to define culture, and through it, individuals form a sense of self and identity. One of the characteristics of culture is that it evolves; Basotho culture is no exception to this. It has evolved through rites of entry, significant ceremonies, daily living, and an approach to others. Most of these affect and have been affected by the local/traditional dress. The study focused on the evolution of culture, and the role played by dress as it is one of the major contributors to non-verbal communication. Methodology: Secondary data were used since most of the original cultural practices are no longer held dear in the value system and so no longer practiced. Interviews were conducted to get some insights from the senior citizens and their responses compared to those of the present adults. Content analysis was used for the interview data. Results: The nature of governance in Lesotho has clearly contributed to the current cultural state of confusion. The Basotho culture has indeed shifted, and the difference in dress code explains it. Acculturation, the alteration in environments, and the type of occasions Basotho attended lately contributed to the shift. Technology brought about a difference in the mode of transport, sports, household activities, and gender roles. Conclusion and Recommendations: It was concluded that since culture is imparted through socialisation, a change in availability of most Basotho women leaves little time left for socialisation with children and resorts to other upbringing patterns, most of which are not cultural; this has brought a cultural shift. In addition, acculturation has contributed massively to the value system of Basotho. The type of dress worn by Basotho presently shifts the culture, and the shifting culture also shifts the dress required to suit the present culture. Because of the type of mindset Basotho has now, it is recommended that cultural days be observed in schools, including the multi-racial ones, and media should assist in this information transmission. The campaigns regarding the value of traditional dress and what it represents are recommended. The local dressmakers manufacturing the Seshoeshoe and any other traditional dress need to be educated about the fabric history, fiber content, and consequent care to be in a position to guide ultimate consumers of the products. Awareness campaigns that the culture shifts and may not necessarily result in negative should be ventured. Cultural exhibitions should also be held ideally at places that hold some cultural heritage. The ministry of sports and culture, together with that of tourism, should run with cultural awareness and enriching vision with a focus on education as opposed to revenue collection.

Keywords: Basotho, culture, dress, acculturation, influence, cultural heritage, socialization, non-verbal communication, Seshoeshoe

Procedia PDF Downloads 50
251 Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping.

Keywords: ArcGIS mapping, neutron gamma analysis, soil elemental content, soil gamma spectroscopy

Procedia PDF Downloads 110
250 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 367
249 Reimagining Urban Food Security Through Informality Practices: The Case of Street Food Vending in Johannesburg, South Africa

Authors: Blessings Masuku

Abstract:

This study positions itself within the nascent of street food vending that plays a crucial role in addressing urban household food security across the urban landscape of South Africa. The study aimed to understand how various forms of infrastructure systems (i.e., energy, water and sanitation, housing, and transport, among others) intersect with food and urban informality and how vendors and households’ choices and decisions made around food are influenced by infrastructure assemblages. This study noted that most of the literature studies on food security have mainly focused on the rural agricultural sector, with limited attention to urban food security, notably the role of informality practices in addressing urban food insecurity at the household level. This study pays close attention to how informal informality practices such as street food vending can be used as a catalyst to address urban poverty and household food security and steer local economies for sustainable livelihoods of the urban poor who live in the periphery of the city in Johannesburg. This study deconstructs the infrastructure needs of street food vendors, and the aim was to understand how such infrastructure needs intersect with food and policy that governs urban informality practices. The study argues that the decisions and choices of informality actors in the city of Johannesburg are chiefly determined by the assemblages of infrastructure, including regulatory frameworks that govern the informal sector in the city of Johannesburg. A qualitative approach that includes surveys (open-ended questions), archival research (i., e policy and other key document reviews), and key interviews mainly with city officials and informality actors. A thematic analysis was used to analyze the data collected. This study contributes to greater debates on urban studies and burgeoning literature on urban food security in many ways that include Firstly, the pivotal role that the informal food sector, notably street food vending, plays within the urban economy to address urban poverty and household food security, therefore questioning the conservative perspectives that view the informal sector as a hindrance to a ‘modern city’ and an annoyance to ‘modern’ urban spaces. Secondly, this study contributes to the livelihood and coping strategies of the urban poor who, despite harsh and restrictive regulatory frameworks, devise various agentive ways to generate incomes and address urban poverty and food insecurities.

Keywords: urban food security, street food vending, informal food sector, infrastructure systems, livelihood strategies, policy framework and governance

Procedia PDF Downloads 34
248 Hierarchical Zeolites as Potential Carriers of Curcumin

Authors: Ewelina Musielak, Agnieszka Feliczak-Guzik, Izabela Nowak

Abstract:

Based on the latest data, it is expected that the substances of therapeutic interest used will be as natural as possible. Therefore, active substances with the highest possible efficacy and low toxicity are sought. Among natural substances with therapeutic effects, those of plant origin stand out. Curcumin isolated from the Curcuma longa plant has proven to be particularly important from a medical point of view. Due to its ability to regulate many important transcription factors, cytokines, and protein kinases, curcumin has found use as an anti-inflammatory, antioxidant, antiproliferative, antiangiogenic, and anticancer agent. The unfavorable properties of curcumin, such as low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions, limit its clinical application. These problems can be solved by combining curcumin with suitable carriers such as hierarchical zeolites. This is a new class of materials that exhibit several advantages. Hierarchical zeolites used as drug carriers enable delayed release of the active ingredient and promote drug transport to the desired tissues and organs. In addition, hierarchical zeolites play an important role in regulating micronutrient levels in the body and have been used successfully in cancer diagnosis and therapy. To apply curcumin to hierarchical zeolites synthesized from commercial FAU zeolite, solutions containing curcumin, carrier and acetone were prepared. The prepared mixtures were then stirred on a magnetic stirrer for 24 h at room temperature. The curcumin-filled hierarchical zeolites were drained into a glass funnel, where they were washed three times with acetone and distilled water, after which the obtained material was air-dried until completely dry. In addition, the effect of piperine addition to zeolite carrier containing a sufficient amount of curcumin was studied. The resulting products were weighed and the percentage of pure curcumin in the hierarchical zeolite was calculated. All the synthesized materials were characterized by several techniques: elemental analysis, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Fourier transform infrared (FT-IR), N2 adsorption, and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The aim of the presented study was to improve the biological activity of curcumin by applying it to hierarchical zeolites based on FAU zeolite. The results showed that the loading efficiency of curcumin into hierarchical zeolites based on commercial FAU-type zeolite is enhanced by modifying the zeolite carrier itself. The hierarchical zeolites proved to be very good and efficient carriers of plant-derived active ingredients such as curcumin.

Keywords: carriers of active substances, curcumin, hierarchical zeolites, incorporation

Procedia PDF Downloads 69
247 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach

Authors: H. M. Ferreira, H. Cockings, D. F. Gordon

Abstract:

Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.

Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel

Procedia PDF Downloads 67
246 Periurban Landscape as an Opportunity Field to Solve Ecological Urban Conflicts

Authors: Cristina Galiana Carballo, Ibon Doval Martínez

Abstract:

Urban boundaries often result in a controversial limit between countryside and city in Europe. This territory is normally defined by the very limited land uses and the abundance of open space. The dimension and dynamics of peri-urbanization in the last decades have increased this land stock, which has influenced/impacted in several factors in terms of economic costs (maintenance, transport), ecological disturbances of the territory and changes in inhabitant´s behaviour. In an increasingly urbanised world and a growing urban population, cities also face challenges such as Climate Change. In this context, new near-future corrective trends including circular economies for local food supply or decentralised waste management became key strategies towards more sustainable urban models. Those new solutions need to be planned and implemented considering the potential conflict with current land uses. The city of Vitoria-Gasteiz (Basque Country, Spain) has triplicated land consumption per habitant in 10 years, resulting in a vast extension of low-density urban type confronting rural land and threatening agricultural uses, landscape and urban sustainability. Urban planning allows managing and optimum use allocation based on soil vocation and socio-ecosystem needs, while peri-urban space arises as an opportunity for developing different uses which do not match either within the compact city, not in open agricultural lands, such as medium-size agrocomposting systems or biomass plants. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Climate change and circular economy were identified as frameworks where to determine future land, soil vocation and urban planning requirements which eventually become estimations of required local food and renewable energy supply along with alternative waste management system´s implementation. By means of it, it has been developed an urban planning proposal which overcomes urban-non urban dichotomy in Vitoria-Gasteiz. The proposal aims to enhance rural system and improve urban sustainability performance through the normative recognition of an agricultural peri-urban belt.

Keywords: landscape ecology, land-use management, periurban, urban planning

Procedia PDF Downloads 133
245 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia PDF Downloads 377