Search results for: soil texture prediction
5617 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping
Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco
Abstract:
Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction
Procedia PDF Downloads 2265616 Morphological Properties of Soil Profile of Vineyard of Bangalore North (GKVK Farm), Karnataka, India
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
A profile was dug at the University of Agricultural Sciences, Bangalore, where grapes were intensively cultivated for 25 years on the dimension of 1.5 × 1.5 × 1.5 m. Demarcation was done on the basis of texture, structure, colour, and the details like depth, texture, colour, consistency, rock fragments, presence of mottles, and structure were recorded and studied according to standard performa of soil profile description. Horizons noticed were Ap, Bt1, Bt2, Bt3, Bt4C, Bt5C and BC with respective depths of 0-13, 13-37, 37-60, 60-78, 78-104, 104-130 and 130-151+ cm. The reddish-brown colour was noticed in Ap, Bt1, and Bt2 horizons. The sub-angular blocky structure was observed in all the layers with slightly acid in reaction. Clear and abrupt smooth boundaries were present between two respective layers with clayey texture in all the horizons except the Ap horizon, which was clay loam in texture. Variegated soil colours and iron concretions were observed in Bt4, Bt5, and BC horizons. Clay skins were observed in Bt and BC horizons. Soils were of highly friable consistency for grapes cultivation.Keywords: soil morphology, horizons, clay skins, consistency, vineyards
Procedia PDF Downloads 1355615 Degradation of Endosulfan in Different Soils by Indigenous and Adapted Microorganisms
Authors: A. Özyer, N. G. Turan, Y. Ardalı
Abstract:
The environmental fate of organic contaminants in soils is influenced significantly by the pH, texture of soil, water content and also presence of organic matter. In this study, biodegradation of endosulfan isomers was studied in two different soils (Soil A and Soil B) that have contrasting properties in terms of their texture, pH, organic content, etc. Two Nocardia sp., which were isolated from soil, were used for degradation of endosulfan. Soils were contaminated with commercial endosulfan. Six sets were maintained from two different soils, contaminated with different endosulfan concentrations for degradation experiments. Inoculated and uninoculated mineral media with Nocardia isolates were added to the soils and mixed. Soils were incubated at a certain temperature (30 °C) during ten weeks. Residue endosulfan and its metabolites’ concentrations were determined weekly during the incubation period. The changes of the soil microorganisms were investigated weekly.Keywords: endosulfan, biodegradation, Nocardia sp. soil, organochlorine pesticide
Procedia PDF Downloads 3855614 Soil Quality Response to Long-Term Intensive Resources Management and Soil Texture
Authors: Dalia Feiziene, Virginijus Feiza, Agne Putramentaite, Jonas Volungevicius, Kristina Amaleviciute, Sarunas Antanaitis
Abstract:
The investigations on soil conservation are one of the most important topics in modern agronomy. Soil management practices have great influence on soil physico-chemical quality and GHG emission. Research objective: To reveal the sensitivity and vitality of soils with different texture to long-term antropogenisation on Cambisol in Central Lithuania and to compare them with not antropogenised soil resources. Methods: Two long-term field experiments (loam on loam; sandy loam on loam) with different management intensity were estimated. Disturbed and undisturbed soil samples were collected from 5-10, 15-20 and 30-35 cm depths. Soil available P and K contents were determined by ammonium lactate extraction, total N by the dry combustion method, SOC content by Tyurin titrimetric (classical) method, texture by pipette method. In undisturbed core samples soil pore volume distribution, plant available water (PAW) content were determined. A closed chamber method was applied to quantify soil respiration (SR). Results: Long-term resources management changed soil quality. In soil with loam texture, within 0-10, 10-20 and 30-35 cm soil layers, significantly higher PAW, SOC and mesoporosity (MsP) were under no-tillage (NT) than under conventional tillage (CT). However, total porosity (TP) under NT was significantly higher only in 0-10 cm layer. MsP acted as dominant factor for N, P and K accumulation in adequate layers. P content in all soil layers was higher under NT than in CT. N and K contents were significantly higher than under CT only in 0-10 cm layer. In soil with sandy loam texture, significant increase in SOC, PAW, MsP, N, P and K under NT was only in 0-10 cm layer. TP under NT was significantly lower in all layers. PAW acted as strong dominant factor for N, P, K accumulation. The higher PAW the higher NPK contents were determined. NT did not secure chemical quality within deeper layers than CT. Long-term application of mineral fertilisers significantly increased SOC and soil NPK contents primarily in top-soil. Enlarged fertilization determined the significantly higher leaching of nutrients to deeper soil layers (CT) and increased hazards of top-soil pollution. Straw returning significantly increased SOC and NPK accumulation in top-soil. The SR on sandy loam was significantly higher than on loam. At dry weather conditions, on loam SR was higher in NT than in CT, on sandy loam SR was higher in CT than in NT. NPK fertilizers promoted significantly higher SR in both dry and wet year, but suppressed SR on sandy loam during usual year. Not antropogenised soil had similar SOC and NPK distribution within 0-35 cm layer and depended on genesis of soil profile horizons.Keywords: fertilizers, long-term experiments, soil texture, soil tillage, straw
Procedia PDF Downloads 2995613 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 1975612 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation
Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei
Abstract:
Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty
Procedia PDF Downloads 1455611 A New Prediction Model for Soil Compression Index
Authors: D. Mohammadzadeh S., J. Bolouri Bazaz
Abstract:
This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP
Procedia PDF Downloads 3765610 Investigation the Effect of Quenching Media on Abrasive Wear in Grade Medium Carbon Steel
Authors: Abbas S. Alwan, Waleed K. Hussan
Abstract:
In this paper, a general verification of possible heat treatment of steel has been done with the view of conditions of real abrasive wear of rotivater with soil texture. This technique is found promising to improve the quality of agriculture components working with the soil in dry condition. Abrasive wear resistance is very important in many applications and in most cases it is directly correlated with the hardness of materials surface. Responded of heat treatments were carried out in various media (Still air, Cottonseed oil, and Brine water 10 %) and follow by low-temperature tempering (250°C) was applied on steel type (AISI 1030). After heat treatment was applied wear with soil texture by using tillage process to determine the (actual wear rate) of the specimens depending on weight loss method. It was found; the wear resistance Increases with increase hardness with varying quenching media as follows; 30 HRC, 45 HRC, 52 HRC, and 60 HRC for nontreated (as received) cooling media as still air, cottonseed oil, and Brine water 10 %, respectively. Martensitic structure with retained austenite can be obtained depending on the quenching medium. Wear was presented on the worn surfaces of the steels which were used in this work.Keywords: microstructures, hardness, abrasive wear, heat treatment, soil texture
Procedia PDF Downloads 3895609 Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys
Authors: N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, T. Kurennykh
Abstract:
Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.Keywords: additive technology, texture, twins, Ti-6Al-4V, oxygen content
Procedia PDF Downloads 6395608 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3115607 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia
Authors: Mohammed Abaoli, Omer Kara
Abstract:
The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam. Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area.Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem
Procedia PDF Downloads 1965606 Using Water Erosion Prediction Project Simulation Model for Studying Some Soil Properties in Egypt
Authors: H. A. Mansour
Abstract:
The objective of this research work is studying the water use prediction, prediction technology for water use by action agencies, and others involved in conservation, planning, and environmental assessment of the Water Erosion Prediction Project (WEPP) simulation model. Models the important physical, processes governing erosion in Egypt (climate, infiltration, runoff, ET, detachment by raindrops, detachment by flowing water, deposition, etc.). Simulation of the non-uniform slope, soils, cropping/management., and Egyptian databases for climate, soils, and crops. The study included important parameters in Egyptian conditions as follows: Water Balance & Percolation, Soil Component (Tillage impacts), Plant Growth & Residue Decomposition, Overland Flow Hydraulics. It could be concluded that we can adapt the WEPP simulation model to determining the previous important parameters under Egyptian conditions.Keywords: WEPP, adaptation, soil properties, tillage impacts, water balance, soil percolation
Procedia PDF Downloads 2985605 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan
Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani
Abstract:
Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.Keywords: gypsum, soil loss, splash erosion, Afghanistan
Procedia PDF Downloads 1335604 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments
Authors: L. Mouzai, M. Bouhadef
Abstract:
Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity
Procedia PDF Downloads 1645603 Soil Degradati̇on Mapping Using Geographic Information System, Remote Sensing and Laboratory Analysis in the Oum Er Rbia High Basin, Middle Atlas, Morocco
Authors: Aafaf El Jazouli, Ahmed Barakat, Rida Khellouk
Abstract:
Mapping of soil degradation is derived from field observations, laboratory measurements, and remote sensing data, integrated quantitative methods to map the spatial characteristics of soil properties at different spatial and temporal scales to provide up-to-date information on the field. Since soil salinity, texture and organic matter play a vital role in assessing topsoil characteristics and soil quality, remote sensing can be considered an effective method for studying these properties. The main objective of this research is to asses soil degradation by combining remote sensing data and laboratory analysis. In order to achieve this goal, the required study of soil samples was taken at 50 locations in the upper basin of Oum Er Rbia in the Middle Atlas in Morocco. These samples were dried, sieved to 2 mm and analyzed in the laboratory. Landsat 8 OLI imagery was analyzed using physical or empirical methods to derive soil properties. In addition, remote sensing can serve as a supporting data source. Deterministic potential (Spline and Inverse Distance weighting) and probabilistic interpolation methods (ordinary kriging and universal kriging) were used to produce maps of each grain size class and soil properties using GIS software. As a result, a correlation was found between soil texture and soil organic matter content. This approach developed in ongoing research will improve the prospects for the use of remote sensing data for mapping soil degradation in arid and semi-arid environments.Keywords: Soil degradation, GIS, interpolation methods (spline, IDW, kriging), Landsat 8 OLI, Oum Er Rbia high basin
Procedia PDF Downloads 1655602 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 3385601 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3715600 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 4375599 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence
Procedia PDF Downloads 3635598 Physical Properties of Rice Field Receiving Irrigation Polluted by Gold Mine Tailing: Case Study in Dharmasraya, West Sumatra, Indonesia
Authors: Yulna Yulnafatmawita, Syafrimen Yasin, Lusi Maira
Abstract:
Irrigation source is one of the factors affecting physical properties of rice field. This research was aimed to determine the impact of polluted irrigation wáter on soil physical properties of rice field. The study site was located in Koto Nan IV, Dharmasraya Regency, West Sumatra, Indonesia. The rice field was irrigated with wáter from Momongan river in which people do gold mining. The soil was sampled vertically from the top to 100 cm depth with 20 cm increment of soil profile from 2 year-fallowed rice field, as well as from the top 20 cm of cultivated rice field from the terrace-1 (the highest terrace) to terrace-5 (the lowest terrace) position. Soil samples were analysed in laboratory. For comparison, rice field receiving irrigation wáter from non-polluted source was also sampled at the top 20 cm and anaysed for the physical properties. The result showed that there was a change in soil physical properties of rice field after 9 years of getting irrigation from the river. Based on laboratory analyses, the total suspended solid (TSS) in the tailing reached 10,736 mg/L. The texture of rice field at polluted rice field (PRF) was dominated (>55%) by sand particles at the top 100 cm soil depth, and it tended to linearly decrease (R2=0.65) from the top 20 cm to 100 cm depth. Likewise, the sand particles also linearly decreased (R2=0.83), but clay particles linearly increased (R2=0.74) horizontally as the distance from the wáter input (terrace-1) was fartherst. Compared to nonpolluted rice field (NPRF), percentage of sand was higher, and clay was lower at PRF. This sandy texture of soil in PRF increased soil hydraulic conductivity (up to 19.1 times), soil bulk density (by 38%), and sharply decreased SOM (by 88.5 %), as well as soil total pore (by 22.1%) compared to the NPRF at the top 20 cm soil. The rice field was suggested to be reclaimed before reusing it. Otherwise the soil characteristics requirement, especially soil wáter retention, for rice field could not be fulfilled.Keywords: gold mine tailing, polluted irrigation, rice field, soil physical properties
Procedia PDF Downloads 2875597 Automatic Moment-Based Texture Segmentation
Authors: Tudor Barbu
Abstract:
An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes
Procedia PDF Downloads 4175596 Nest-Site Selection of Crested Lark (Galerida cristata) in Yazd Province, Iran
Authors: Shirin Aghanajafizadeh
Abstract:
Nest site selection of Crested Lark was investigated in Boroyeh wildlife sanctuary of Harat during spring 2014. Habitat variables such as number of plant species, soil texture, distance to the nearest water resources, farms and roads were compared in the species presence plots with absence ones. Our analysis showed that the average number of Zygophyllum atriplicoidesand, Artemisia sieberi were higher while fine-textured soil percent cover (with very little and gravel) was lower in species presence plots than control plots. We resulted that the most affecting factor in the species nest site selection is the number of Z .atriplicoides and soil texture. Z. atriplicoides and A. sieberi can provide cover for nests and chickens against predators and environmental harsh events such as sunshine and wind. The stability of built nest forces the birds to select sites with not fine-textured soil. Some of the nests were detected in Alfalfa farms that can be related to its cover producing capability.Keywords: habitat selection, Yazd Province, presence and absence plots, habitat variables
Procedia PDF Downloads 1865595 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V.K.Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier
Procedia PDF Downloads 4915594 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3165593 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision
Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.
Abstract:
To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model
Procedia PDF Downloads 1895592 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality
Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar
Abstract:
The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.Keywords: humic acids, natural organic matter, zeta potential, soil quality
Procedia PDF Downloads 2535591 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 3855590 Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications
Authors: Abdel Khalek Selim, Safaa Mahmoud
Abstract:
Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants.Keywords: alluvial soil, calcareous soil, elemental sulfur, nitrate leaching
Procedia PDF Downloads 3185589 Investigating the Effect of Industrial Wastewater Application on the Concentration of Nitrate and Phosphate in the Soil of the Land Space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company
Authors: Seyed Alireza Farrokhzad, Seyed Amin Alavi, Ebrahim Panahpour
Abstract:
The use of industrial wastewater affects the properties of soil, including its chemical properties. This research was conducted randomly in order to investigate the effect of industrial wastewater application on the concentration of nitrate and phosphate in loamy soil in the land space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company. Industrial wastewater was added in ten irrigation periods in the three months of summer 2022 and was used in a part of the land space of the factory. After finishing the irrigation process with wastewater, the soil nitrate and phosphate values were measured at the depths of 0-25, 25-50 and 50-100 cm. The results showed that adding sewage to the soil increased nitrate and phosphate. The increase of these ions in the soil became loamy. Also, the results showed that the amount of phosphate in the soil decreases with increasing depth, while the amount of nitrate in the soil increases with increasing depth, which is due to the high mobility of nitrate along the soil profile. Also, with the increase in the level of use of wastewater, the amount of nitrate accumulation in the lower layers of the soil increased.Keywords: industrial wastewater, soil chemical properties, loamy texture, land space
Procedia PDF Downloads 875588 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: segmentation, color-texture, neural networks, fractal, watershed
Procedia PDF Downloads 349