Search results for: single detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7511

Search results for: single detection

7211 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 66
7210 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 113
7209 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 317
7208 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor

Procedia PDF Downloads 456
7207 Methods for Early Detection of Invasive Plant Species: A Case Study of Hueston Woods State Nature Preserve

Authors: Suzanne Zazycki, Bamidele Osamika, Heather Craska, Kaelyn Conaway, Reena Murphy, Stephanie Spence

Abstract:

Invasive Plant Species (IPS) are an important component of effective preservation and conservation of natural lands management. IPS are non-native plants which can aggressively encroach upon native species and pose a significant threat to the ecology, public health, and social welfare of a community. The presence of IPS in U.S. nature preserves has caused economic costs, which has estimated to exceed $26 billion a year. While different methods have been identified to control IPS, few methods have been recognized for early detection of IPS. This study examined identified methods for early detection of IPS in Hueston Woods State Nature Preserve. Mixed methods research design was adopted in this four-phased study. The first phase entailed data gathering, the phase described the characteristics and qualities of IPS and the importance of early detection (ED). The second phase explored ED methods, Geographic Information Systems (GIS) and Citizen Science were discovered as ED methods for IPS. The third phase of the study involved the creation of hotspot maps to identify likely areas for IPS growth. While the fourth phase involved testing and evaluating mobile applications that can support the efforts of citizen scientists in IPS detection. Literature reviews were conducted on IPS and ED methods, and four regional experts from ODNR and Miami University were interviewed. A questionnaire was used to gather information about ED methods used across the state. The findings revealed that geospatial methods, including Unmanned Aerial Vehicles (UAVs), Multispectral Satellites (MSS), and Normalized Difference Vegetation Index (NDVI), are not feasible for early detection of IPS, as they require GIS expertise, are still an emerging technology, and are not suitable for every habitat for the ED of IPS. Therefore, Other ED methods options were explored, which include predicting areas where IPS will grow, which can be done through monitoring areas that are like the species’ native habitat. Through literature review and interviews, IPS are known to grow in frequently disturbed areas such as along trails, shorelines, and streambanks. The research team called these areas “hotspots” and created maps of these hotspots specifically for HW NP to support and narrow the efforts of citizen scientists and staff in the ED of IPS. The results further showed that utilizing citizen scientists in the ED of IPS is feasible, especially through single day events or passive monitoring challenges. The study concluded that the creation of hotspot maps to direct the efforts of citizen scientists are effective for the early detection of IPS. Several recommendations were made, among which is the creation of hotspot maps to narrow the ED efforts as citizen scientists continues to work in the preserves and utilize citizen science volunteers to identify and record emerging IPS.

Keywords: early detection, hueston woods state nature preserve, invasive plant species, hotspots

Procedia PDF Downloads 67
7206 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging

Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini

Abstract:

Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.

Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation

Procedia PDF Downloads 106
7205 High-Dose-Rate Brachytherapy for Cervical Cancer: The Effect of Total Reference Air Kerma on the Results of Single-Channel and Tri-Channel Applicators

Authors: Hossain A., Miah S., Ray P. K.

Abstract:

Introduction: Single channel and tri-channel applicators are used in the traditional treatment of cervical cancer. Total reference air kerma (TRAK) and treatment outcomes in high-dose-rate brachytherapy for cervical cancer using single-channel and tri-channel applicators were the main objectives of this retrospective study. Material and Methods: Patients in the radiotherapy division who received brachytherapy, chemotherapy, and external radiotherapy (EBRT) using single and tri-channel applicators were the subjects of a retrospective cohort study from 2016 to 2020. All brachytherapy parameters, including TRAK, were calculated in accordance with the international protocol. The Kaplan Meier method was used to analyze survival rates using a log-rank test. Results and Discussions: Based on treatment times of 15.34 (10-20) days and 21.35 (6.5-28) days, the TRAK for the tri-channel applicator was 0.52 cGy.m² and for the single-channel applicator was 0.34 cGy.m². Based on TRAK, the rectum, bladder, and tumor had respective Pearson correlations of 0.082, 0.009, and 0.032. The 1-specificity and sensitivity were 0.70 and 0.30, respectively. At that time, AUC was 0.71. The log-rank test showed that tri-channel applicators had a survival rate of 95% and single-channel applicators had a survival rate of 85% (p=0.565). Conclusions: The relationship between TRAK and treatment duration and Pearson correlation for the tumor, rectum, and bladder suggests that TRAK should be taken into account for the proper operation of single channel and tri-channel applicators.

Keywords: single-channel, tri-channel, high dose rate brachytherapy, cervical cancer

Procedia PDF Downloads 72
7204 Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry

Authors: Fangyan Li, Lin Min Lee, Hui Zhu Peh, Shoet Harn Chan

Abstract:

Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food.

Keywords: advantame, food, LC-MS/MS, sweetener

Procedia PDF Downloads 438
7203 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 397
7202 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment

Authors: Jonathan Heng, Yoong Cheah Huei

Abstract:

A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.

Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters

Procedia PDF Downloads 155
7201 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 330
7200 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia

Authors: Ali A. Aldosari

Abstract:

Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.

Keywords: spatial analysis, geographical information system, change detection

Procedia PDF Downloads 374
7199 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 132
7198 Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate

Authors: Misa Nakao, Yuta Kurashina, Chikahiro Imashiro, Kenjiro Takemura

Abstract:

The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications.

Keywords: acoustic radiation force, cell proliferation, regenerative medicine, resonance vibration, single cell sorter

Procedia PDF Downloads 239
7197 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 22
7196 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 97
7195 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 130
7194 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA

Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata

Abstract:

We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.

Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time

Procedia PDF Downloads 525
7193 Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses

Authors: Dinesh Gundavaram

Abstract:

This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement.

Keywords: bridge, damage, dynamic responses, detection

Procedia PDF Downloads 241
7192 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection

Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud

Abstract:

A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.

Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique

Procedia PDF Downloads 152
7191 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 44
7190 Development and Validation of High-Performance Liquid Chromatography Method for the Determination and Pharmacokinetic Study of Linagliptin in Rat Plasma

Authors: Hoda Mahgoub, Abeer Hanafy

Abstract:

Linagliptin (LNG) belongs to dipeptidyl-peptidase-4 (DPP-4) inhibitor class. DPP-4 inhibitors represent a new therapeutic approach for the treatment of type 2 diabetes in adults. The aim of this work was to develop and validate an accurate and reproducible HPLC method for the determination of LNG with high sensitivity in rat plasma. The method involved separation of both LNG and pindolol (internal standard) at ambient temperature on a Zorbax Eclipse XDB C18 column and a mobile phase composed of 75% methanol: 25% formic acid 0.1% pH 4.1 at a flow rate of 1.0 mL.min-1. UV detection was performed at 254nm. The method was validated in compliance with ICH guidelines and found to be linear in the range of 5–1000ng.mL-1. The limit of quantification (LOQ) was found to be 5ng.mL-1 based on 100µL of plasma. The variations for intra- and inter-assay precision were less than 10%, and the accuracy values were ranged between 93.3% and 102.5%. The extraction recovery (R%) was more than 83%. The method involved a single extraction step of a very small plasma volume (100µL). The assay was successfully applied to an in-vivo pharmacokinetic study of LNG in rats that were administered a single oral dose of 10mg.kg-1 LNG. The maximum concentration (Cmax) was found to be 927.5 ± 23.9ng.mL-1. The area under the plasma concentration-time curve (AUC0-72) was 18285.02 ± 605.76h.ng.mL-1. In conclusion, the good accuracy and low LOQ of the bioanalytical HPLC method were suitable for monitoring the full pharmacokinetic profile of LNG in rats. The main advantages of the method were the sensitivity, small sample volume, single-step extraction procedure and the short time of analysis.

Keywords: HPLC, linagliptin, pharmacokinetic study, rat plasma

Procedia PDF Downloads 218
7189 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 134
7188 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam

Authors: Pajaree Donkhampa, Fuangfa Unob

Abstract:

Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.

Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye

Procedia PDF Downloads 148
7187 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 463
7186 Clustering Color Space, Time Interest Points for Moving Objects

Authors: Insaf Bellamine, Hamid Tairi

Abstract:

Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.

Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering

Procedia PDF Downloads 351
7185 The Gradient Complex Protective Coatings for Single Crystal Nickel Alloys

Authors: Evgeniya Popova, Vladimir Lesnikov, Nikolay Popov

Abstract:

High yield complex coatings have been designed for thermally stressed cooled HP turbine blades from single crystal alloys ZHS32-VI-VI and ZHS36 with crystallographic orientation [001]. These coatings provide long-term protection of single crystal blades during operation. The three-layer coatings were prepared as follows: the diffusion barrier layer formation on the alloy surface, the subsequent deposition of the condensed bilayer coatings consisting of an inner layer based on Ni-Cr-Al-Y systems and an outer layer based on the alloyed β-phase. The structure, phase composition of complex coatings and reaction zone interaction with the single-crystal alloys ZHS32-VI and ZHS36-VI were investigated using scanning electron microscope (SEM). The effect of complex protective coatings on the properties of heat-resistant nickel alloys was studied.

Keywords: single crystal nickel alloys, complex heat-resistant coatings, structure, phase composition, properties

Procedia PDF Downloads 382
7184 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 201
7183 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 180
7182 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 391