Search results for: ring opening polymerization (ROP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1123

Search results for: ring opening polymerization (ROP)

1063 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: polyethylene, polymerization, density, melt index, neural network

Procedia PDF Downloads 119
1062 pH and Temperature Triggered Release of Doxorubicin from Hydogen Bonded Multilayer Films of Polyoxazolines

Authors: Meltem Haktaniyan, Eda Cagli, Irem Erel Goktepe

Abstract:

Polymers that change their properties in response to different stimuli (e.g. light, temperature, pH, ionic strength or magnetic field) are called ‘smart’ or ‘stimuli-responsive polymers’. These polymers have been widely used in biomedical applications such as sensors, gene delivery, drug delivery or tissue engineering. Temperature-responsive polymers have been studied extensively for controlled drug delivery applications. As regard of pseudo-peptides, poly (2-alky-2-oxazoline)s are considered as good candidates for delivery systems due to their stealth behavior and nontoxicity. In order to build responsive multilayer films for controlled drug release applications from surface, Layer by layer technique (LBL) is a powerful technique with an advantage of nanometer scale control over spatial architecture and morphology. Multilayers can be constructed on surface where non-covalent interactions including electrostatic interactions, hydrogen bonding, and charge-transfer or hydrophobic-hydrophobic interactions. In the present study, hydrogen bounded multilayer films of poly (2-alky-2-oxazoline) s with tannic acid were prepared in order to use as a platform to release Doxorubicin (DOX) from surface with pH and thermal triggers. For this purpose, poly (2-isopropyl-2-oxazoline) (PIPOX) and poly (2-ethyl-2-oxazoline) (PETOX) were synthesized via cationic ring opening polymerization (CROP) with hydroxyl end groups. Two polymeric multilayer systems ((PETOX)/(DOX)-(TA) complexes and (PIPOX)/(DOX)-(TA) complexes) were designed to investigate of controlled release of Doxorubicin (DOX) from surface with pH and thermal triggers. The drug release profiles from the multilayer thin films with alterations of pH and temperature will been examined with UV-Vis Spectroscopy and Fluorescence Spectroscopy.

Keywords: temperature responsive polymers, h-bonded multilayer films, drug release, polyoxazoline

Procedia PDF Downloads 285
1061 Diagnostic and Analysis of the Performance of Freight Transportation on Urban Logistics System in the City of Sfax

Authors: Tarak Barhoumi, Younes Boujelbene

Abstract:

Nowadays, the problems of freight transport pose logistical constraints on the urban system in the city. The aim of this article is to gain a better understanding of the interactions between local traffic and interurban traffic on the one hand and between the location system and the transport system on the other hand. Thus, in a simulation and analysis approach cannot be restricted to the only transport system. The proposed approach is based on an assessment of the impact of freight transport, which is closely linked to the diagnostic method, based on two surveys carried out on the territory of the urban community of Sfax. These surveys are based on two main components 'establishment component' first and 'driver component' second. The results propose a reorganization of freight transport in the city of Sfax. First, an orientation of the heavy goods vehicles traffic towards the major axes of transport namely the ring roads (ring road N° 2, ring road N° 4 and ring road N° 11) and the penetrating news of the city. Then, the implementation of a retail goods delivery policy and the strengthening of logistics in the city. The creation of a logistics zone at the ring road N° 11 where various modes of freight transport meet, in order to decongest the roads of heavy goods traffic, reduce the cost of transport and thus improve the competitiveness of the economy regional.

Keywords: urban logistics systems, transport freight, diagnostics, evaluation

Procedia PDF Downloads 132
1060 Patella Proximo-Distal Displacement Following Modified Maquet Technique

Authors: T. Giansetto, E. Pierrot, P. Picavet, M. Lefebvre, S. Claeys, M. Balligand

Abstract:

Objective: To test the low sensitivity of the Allberg and Miles index to the stifle opening angle, to evaluate the displacement of the patella after a Modified Maquet Technique using this index, and to assess the incidence of patella luxation post-Modified Maquet Technique in dogs. Materials and methods: Medical records were reviewed from 2012 to 2017. Allberg Miles index was determined for each stifle pre and post-operatively, as well as the stifle joint opening of each case. The occurrence of patella luxation was recorded. Results: 137 stifles on 116 dogs were reviewed. The stifle opening angle did not influence the Allberg Miles index (p=0.41). Pre and post-operative index showed a distal displacement of the patella after a Modified Maquet Procedure, especially at a 90° of stifle opening angle. Only 1/137 cases demonstrated patella luxation after the surgery. Conclusion: The Allberg Miles radiographic index is largely independent of the stifle opening angle and can be used to assess the proximo-distal position of the patella in relation to the femoral trochlear groove. If patella baja is clearly induced by the Modified Maquet Technique, the latter does not seem to predispose patients to post-operative patella luxation in a large variety of dog breeds.

Keywords: rlca, modified Maquet technique, patella luxation, orthopedic

Procedia PDF Downloads 95
1059 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application

Authors: Mohsin Ejaz, Shiao-Wei Kuo

Abstract:

The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.

Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor

Procedia PDF Downloads 30
1058 Conducting Glove Leathers Prepared through in-situ Polymerization of Pyrrole

Authors: Wegene Demisie Jima

Abstract:

Leather is a durable and flexible material used for various purposes including clothing, footwear, upholstery and gloves. However, the use of leather for smart product applications is a challenge since it is electrically insulating material. Here, we report a simple method to produce conducting glove leathers using an in-situ polymerization of pyrrole. The concentrations of pyrrole, ferric chloride and anthraquinone-2-sulfonic acid sodium salt monohydrate were optimized to produce maximum conductivity in the treated leathers. The coating of polypyrrole in the treated leathers was probed using FT-IR, X-ray diffraction and electron microscopic analysis. FTIR confirms that the formation of polypyrrole on the leather surface as well as presence of prominent N-C stretching band. X-ray diffraction analysis suggests para-crystallinity in the PPy-treated leathers.We further demonstrate that the treated leathers, with maximum conductivity of 7.4 S/cm, can be used for making conductive gloves for operating touch-screen devices apart from other smart product applications.

Keywords: electrical conductivity, in-situ polymerization, pyrrole, smart product

Procedia PDF Downloads 151
1057 Optical Analysis of the Plasmon Resonances of Gold Nano-Ring

Authors: Mehrnaz Mostafavi

Abstract:

The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures.

Keywords: nano-ring structure, nano-particles, reductant agents, plasmon resonace

Procedia PDF Downloads 44
1056 Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils

Authors: A.Cifarelli, L. Boggioni, F. Bertini, L. Magon, M. Pitalieri, S. Losio

Abstract:

Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength.

Keywords: bio-polyols, polyurethane foams, solvent free synthesis, waterborne-polyurethanes

Procedia PDF Downloads 100
1055 The Interaction between Blood-Brain Barrier and the Cerebral Lymphatics Proposes Therapeutic Method for Alzheimer’S Disease

Authors: M. Klimova, O. Semyachkina-Glushkovskaya, J. Kurts, E. Zinchenko, N. Navolokin, A. Shirokov, A. Dubrovsky, A. Abdurashitov, A. Terskov, A. Mamedova, I. Agranovich, T. Antonova, I. Blokhina

Abstract:

The direction for research of Alzheimer's disease is to find an effective non-invasive and non-pharmacological way of treatment. Here we tested our hypothesis that the opening of the blood-brain barrier (BBB) induces activation of lymphatic drainage and clearing functions that can be used as a method for non-invasive stimulation of clearance of beta-amyloid and therapy of Alzheimer’s disease (AD). To test our hypothesis, in this study on healthy male mice we analyzed the interaction between BBB opening by repeated loud music (100-10000 Hz, 100 dB, duration 2 h: 60 sec – sound; 60 sec - pause) and functional changes in the meningeal lymphatic vessels (MLVs). We demonstrate clearance of dextran 70 kDa (i.v. injection), fluorescent beta-amyloid (intrahippocampal injection) and gold nanorods (intracortical injection) via MLV that significantly increased after the opening of BBB. Our studies also demonstrate that the BBB opening was associated with the improvement of neurocognitive status in mice with AD. Thus, we uncover therapeutic effects of BBB opening by loud music, such as non-invasive stimulation of lymphatic clearance of beta-amyloid in mice with AD, accompanied by improvement of their neurocognitive status. Our data are consistent with other results suggesting the therapeutic effect of BBB opening by focused ultrasound without drugs for patients with AD. This research was supported by a grant from RSF 18-75-10033

Keywords: Alzheimer's disease, beta-amyloid, blood-brain barrier, meningeal lymphatic vessels, repeated loud music

Procedia PDF Downloads 109
1054 Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey

Authors: P. M. Keshtiban, M. Zadshakoyan

Abstract:

One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material.

Keywords: experiment, FEM, friction coefficient, ring compression

Procedia PDF Downloads 433
1053 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization

Authors: Leonnel Mhuka

Abstract:

Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications

Keywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications

Procedia PDF Downloads 68
1052 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate

Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki

Abstract:

Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.

Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion

Procedia PDF Downloads 282
1051 A Study on Weddernburn – Artin Theorem for Rings

Authors: Fahad Suleiman, Sammani Abdullahi

Abstract:

The study depicts that a Wedderburn Artin – theorem for rings is considered to be a semisimple ring R which is isomorphic to a product of finitely many mi by mi matrix rings over division rings Di, for some integers n_i, both of which are uniquely determined up to permutation of the index i. It has been concluded that when R is simple the Wedderburn – Artin theorem is known as Wedderburn’s theorem.

Keywords: Commutativity, Wedderburn theorem, Semisimple ring, R module

Procedia PDF Downloads 133
1050 Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization

Authors: Mehrji Khosravan, Mostafa Fathali-Sianib, Davood Soudbar, Sasan Talebnezhad, Mohammad-Reza Ebrahimi

Abstract:

The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst.

Keywords: α-diimine nickel (II) complex, graphene as supported catalyst, late transition metal, ethylene polymerization

Procedia PDF Downloads 349
1049 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them

Authors: M. Abdo, Mohamed Shalaby

Abstract:

A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.

Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros

Procedia PDF Downloads 43
1048 Chromatographic Preparation and Performance on Zinc Ion Imprinted Monolithic Column and Its Adsorption Property

Authors: X. Han, S. Duan, C. Liu, C. Zhou, W. Zhu, L. Kong

Abstract:

The ionic imprinting technique refers to the three-dimensional rigid structure with the fixed pore sizes, which was formed by the binding interactions of ions and functional monomers and used ions as the template, it has a high level of recognition to the ionic template. The preparation of monolithic column by the in-situ polymerization need to put the compound of template, functional monomers, cross-linking agent and initiating agent into the solution, dissolve it and inject to the column tube, and then the compound will have a polymerization reaction at a certain temperature, after the synthetic reaction, we washed out the unread template and solution. The monolithic columns are easy to prepare, low consumption and cost-effective with fast mass transfer, besides, they have many chemical functions. But the monolithic columns have some problems in the practical application, such as low-efficiency, quantitative analysis cannot be performed accurately because of the peak shape is wide and has tailing phenomena; the choice of polymerization systems is limited and the lack of theoretical foundations. Thus the optimization of components and preparation methods is an important research direction. During the preparation of ionic imprinted monolithic columns, pore-forming agent can make the polymer generate the porous structure, which can influence the physical properties of polymer, what’ s more, it can directly decide the stability and selectivity of polymerization reaction. The compounds generated in the pre-polymerization reaction could directly decide the identification and screening capabilities of imprinted polymer; thus the choice of pore-forming agent is quite critical in the preparation of imprinted monolithic columns. This article mainly focuses on the research that when using different pore-forming agents, the impact of zinc ion imprinted monolithic column on the enrichment performance of zinc ion.

Keywords: high performance liquid chromatography (HPLC), ionic imprinting, monolithic column, pore-forming agent

Procedia PDF Downloads 188
1047 Prolonged Ileus in Traumatic Pelvic Ring Injury Patients Who Underwent Arterial Angio-Embolization: A Retrospective Study

Authors: Suk Kyoon Song, Myung-Rae Cho

Abstract:

Purpose: Paralytic ileus occurs in up to 18% of patients with pelvic bone fractures. The aim of this study is to determine if massive bleeding requiring arterial angioembolization is related to the duration of ileus in patients with traumatic pelvic ring injuries. Methods: This retrospective study included 25 patients who underwent arterial angioembolization for traumatic pelvic ring injuries. Data were collected from prospectively maintained databases of two independent hospitals. Results: Demographic characteristics (such as age, sex, body mass index, and Charlson Comorbidity Index), cause of trauma, and severity of pelvic injuries were similar in the non-prolonged and prolonged ileus groups. As expected, the prolonged ileus group had a significantly longer duration of ileus than the non-prolonged ileus group (8.0 ± 4.2 days vs. 1.2 ± 0.4 days, respectively, P < 0.001). The mortality rate was higher in the prolonged ileus group (20% vs. 0%), but it was not significantly different (P = 0.13). Interestingly, the prolonged ileus group received significantly higher amounts of packed red blood cell (PRBC) transfusions (6.1 ± 2.1 units vs. 3.8 ± 2.5 units; P = 0.02). The amount of PRBC transfusions was associated with a greater risk of prolonged ileus development (P = 0.03, OR = 2.04, 95% CI = 1.08-3.88). Conclusion: This study supports the idea that the duration of the ileus is related to the amount of bleeding caused by the traumatic pelvic ring injury. In order to prevent further complications, conservative treatments of the ileus should be considered.

Keywords: pelvic ring injury, bleeding, ileus, arterial angioembolization

Procedia PDF Downloads 90
1046 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 270
1045 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna

Authors: Amit Kumar Baghel, Sisir Kumar Nayak

Abstract:

The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.

Keywords: metamaterial, side lobe level, front to back ratio, beam forming

Procedia PDF Downloads 219
1044 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 270
1043 Dual Reconfigurable Antenna Using Capacitive Coupling Slot and Parasitic Square Ring

Authors: M. Abou Al-alaa, H. A. Elsadek, E. A. Abdallah, E. A. Hashish

Abstract:

A square patch antenna with both frequency and polarization reconfigurability is presented. The antenna consists of a square patch with coplanar feed on the ground plane. On the patch side, there is a parasitic square ring that is responsible for changing the antenna polarization. On the ground plane, there is a rectangular slot. By changing of length of this slot, the antenna resonance frequency can be changed. The antenna operates at 1.57 and 2.45 GHz that used in GPS and Bluetooth applications, respectively. The length of the slot in the proposed antenna is 40 mm, and the antenna operates at the lower frequency (1.57 GHz). By using switches in the ground plane the slot length can be adjust to 24 mm, so the antenna operates at upper frequency (2.45 GHz). Two switches are mounted on the parasitic ring at optimized positions. By switching between the different states of these two switches, the proposed antenna operates with linear polarization (LP) and circular polarization (CP) at each operating frequency. The antenna gain at 1.57 and 2.45 GHz are 5.9 and 7.64 dBi, respectively. The antenna is analyzed using the CST Microwave Studio. The proposed antenna was fabricated and measured. Results comparison shows good agreement. The antenna has applications in several wireless communication systems.

Keywords: microstrip patch antenna, reconfigurable antenna, frequency reconfigurability, polarization reconfigurability, parasitic square ring, linear polarization, circular polarization

Procedia PDF Downloads 502
1042 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization

Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda

Abstract:

The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.

Keywords: initiator, bulk polymerization, layered silicates, methyl methacrylate

Procedia PDF Downloads 262
1041 Response of Solar Updraft Power Plants Incorporating Material Nonlinearity

Authors: Areeg Shermaddo

Abstract:

Solar updraft power plants (SUPP) provide a great potential for green and environmentally friendly renewable power generation. An up to 1000 m high chimney represents one of the major parts of each SUPP, which consist of the main shell structure and the stiffening rings. Including the nonlinear material behavior in a simulation of the chimney is computationally a demanding task. However, allowing the formation of cracking in concrete leads to a more economical design of the structure. In this work, an FE model of a SUPP is presented incorporating the nonlinear material behavior. The effect of wind loading intensity on the structural response is explored. Furthermore, the influence of the stiffness of the ring beams on the global behavior is as well investigated. The obtained results indicate that the minimum reinforcement is capable of carrying the tensile stresses provided that the ring beams are rather stiff.

Keywords: ABAQUS, nonlinear analysis, ring beams, SUPP

Procedia PDF Downloads 199
1040 Comparative Studies of Modified Clay/Polyaniline Nanocomposites

Authors: Fatima Zohra Zeggai, Benjamin Carbonnier, Aïcha Hachemaoui, Ahmed Yahiaoui, Samia Mahouche-Chergui, Zakaria Salmi

Abstract:

A series of polyaniline (PANI)/modified Montmorillonite (MMT) Clay nanocomposite materials have been successfully prepared by In-Situ polymerization in the presence of modified MMT-Clay or Diazonium-MMT-Clay. The obtained nanocomposites were characterized and compared by various physicochemical techniques. The presence of physicochemical interaction, probably hydrogen bonding, between clay and polyaniline, which was confirmed by FTIR, UV-Vis Spectroscopy. The electrical conductivity of neat PANI and a series of the obtained nanocomposites were also studied by cyclic voltammograms.

Keywords: polyaniline, clay, nanocomposites, in-situ polymerization, polymers conductors, diazonium salt

Procedia PDF Downloads 440
1039 Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites

Authors: Fatma Zehra Engin Sagirli, Eyup Sabri Kayali, A. Sezai Sarac

Abstract:

In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS.

Keywords: nanocomposites, core-shell, pyrole, surfactant

Procedia PDF Downloads 377
1038 Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs

Authors: Baziana Peristera

Abstract:

The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories.

Keywords: asynchronous transmission, collision avoidance, wavelength division multiplexing, WDM

Procedia PDF Downloads 345
1037 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications

Authors: C. Elavarasi, T. Shanmuganantham

Abstract:

A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.

Keywords: fractal, metamaterial, split ring resonator, waterlily shape

Procedia PDF Downloads 242
1036 Semi-automatic Design and Fabrication of Ring-Bell Control by IoT

Authors: Samart Rungjarean, Benchalak Muangmeesri, Dechrit Maneetham

Abstract:

Monks' and Novices' chimes may have some restrictions, such as during the rain when a structure or location chimes or at a certain period. Alternately, certain temple bells may be found atop a tall, difficult-to-reach bell tower. As a result, the concept of designing a brass bell for use with a mobile phone over great distances was proposed. The Internet of Things (IoT) system will be used to regulate the bell by testing each of the three beatings with a wooden head. A stone-beating head and a steel beater. The sound resonates nicely, with the distance and rhythm of the hit contributing to this. An ESP8266 microcontroller is used by the control system to manage its operations and will communicate with the pneumatic system to convey a signal. Additionally, a mobile phone will be used to operate the entire system. In order to precisely direct and regulate the rhythm, There is a resonance of roughly 50 dB for this test, and the operating distance can be adjusted. Timing and accuracy were both good.

Keywords: automatic ring-bell, microcontroller, ring-bell, iot

Procedia PDF Downloads 77
1035 A Survey of the Sleep-Disturbed Bedroom Environmental Factors and the Occupants Bedroom Windows or Door Opening Behaviors

Authors: Chenxi Liao, Mizuho Akimoto, Mariya Bivolarova, Sekhar Chandra, Xiaojun Fan, Li Lan, Jelle Laverge, Pawel Wargocki

Abstract:

The bedroom environment plays an important role in maintaining good sleep quality, which is vital for humans health and next-day performance. A survey of the sleep-disturbed bedroom environmental factors and the occupants’ bedroom windows (BW) or bedroom door (BD) opening behaviors was launched in the capital region of Denmark in 2020 by an online questionnaire. People were asked if they were disturbed by too warm temperature, too cool temperature, noise, or stuffy air during sleep. Also, they reported their BW or the BD opening behaviors in the morning, afternoon, evening, and during sleep. A total of 512 responses were received. Too warm temperature was reported the most among the four sleep-disturbed factors, following too cool temperature, noise, and stuffy air. Whether or not opening BW or the BD was commonly used to improve or change the bedroom environment. The respondents who were disturbed by too warm temperature during sleep opened BW for a longer time in the morning compared to those who were never disturbed by it (OR, 1.28; 95% CI, 1.01-1.62). Those who were disturbed by too cool temperatures tended to open BW less frequently in the morning (OR, 1.24; 95% CI, 0.97-1.57). They preferred keeping BW open in the whole day if they realized stuffy air disturbing their sleep, although only a few of them still opened BW during sleep. Those who were disturbed by too cool temperature (OR, 0.76; 95% CI, 0.63-0.92) and noise (OR, 0.80; 95% CI, 0.66-0.96) were more likely to sleep with the BD open in a lesser frequency. Opening BW, increasing ventilation rates, could relieve disturbing by stuffy air during sleep, but induced other sleep-disturbed factors such as too cool in winter and noise. Also, opening BW only when people were not sleep was not sufficient to exempt disturbing by stuffy air during sleep. Using mechanical ventilation in bedrooms is necessary to ensure good air quality and meanwhile to avoid thermal discomfort and noise during sleep. Future studies are required to figure out the required flow rate of fresh air of mechanical ventilation during sleep.

Keywords: bedroom environmental, survey, occupants behaviors, windows, door

Procedia PDF Downloads 171
1034 Theoretical Evaluation of Oxirane and Aziridine Opening Regioselectivity, Solvent Effect, and Strength of Nucleophilic and Nucleofugal Groups for the Preparation of Benzimidazole-Fused 1,4-Benzoxazepine

Authors: M. Abdoul-Hakim, a. Zeroual, H. Garmes

Abstract:

In a route for the preparation of 1,4-benzoxazepine fused to benzimidazole, the use of 2-(2-methoxyphenyl)-benzimidazole or styrene-derived N-tosylaziridine does not give the desired products. On this basis, we theoretically studied this reaction using DFT at the B3LYP/6-31+G(d) level. The analysis of the results shows a preferential nucleophilic attack of 2-(2-fluorophenyl)-benzimidazole on the terminal carbon atom of the Alkylepoxides and on the substituted carbon of N-tosylaziridine. Taking into account the solvent effect (DMF) makes the reactions spontaneous for the opening of epoxides and N-tosylaziridine and disfavors the intramolecularnucleophilic aromatic substitution reaction step of the products of the attack of 2-(2-methoxyphenyl)benzimidazole on an epoxide and those of the opening of N-tosylaziridine, which is consistent with the experiment.

Keywords: alkylepoxides, 4-benzoxazepine fused to benzimidazole imine, benzonitrile N-oxide, DFT, intramolecular nucleophilic aromatic substitution, N-tosyl aziridine

Procedia PDF Downloads 109