Search results for: requirement modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2768

Search results for: requirement modelling

518 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction

Procedia PDF Downloads 101
517 The Challenges of Well Integrity on Plug and Abandoned Wells for Offshore Co₂ Storage Site Containment

Authors: Siti Noor Syahirah Mohd Sabri

Abstract:

The oil and gas industry is committed to net zero carbon emissions because the consequences of climate change could be catastrophic unless responded to very soon. One way of reducing CO₂ emissions is to inject it into a depleted reservoir buried underground. This greenhouse gas reduction technique significantly reduces CO₂ released into the atmosphere. In general, depleted oil and gas reservoirs provide readily available sites for the storage of CO₂ in offshore areas. This is mainly due to the hydrocarbons have been optimally produced and the existence of voids for effective CO₂ storage. Hence, make it a good candidate for a CO₂ well injector location. Geological storage sites are often evaluated in terms of capacity, injectivity and containment. Leakage through the cap rock or existing well is the main concern in the depleted fields. In order to develop these fields as CO₂ storage sites, the long-term integrity of wells drilled in these oil & gas fields must be ascertained to ensure good CO₂ containment. Well, integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. Most plugged and abandoned (P & A) wells in Peninsular Malaysia have drilled 20 – 30 years ago and were not designed to withstand downhole conditions having >50%vol CO₂ and CO₂/H₂O mixture. In addition, Corrosive-Resistant Alloy (CRA) tubular and CO₂-resistant cement was not used during good construction. The reservoir pressure and temperature conditions may have further degraded the material strength and elevated the corrosion rate. Understanding all the uncertainties that may have affected cement-casing bonds, such as the quality of cement behind the casing, subsidence effect, corrosion rate, etc., is the first step toward well integrity evaluation. Secondly, proper quantification of all the uncertainties involved needs to be done to ensure long-term underground storage objectives of CO₂ are achieved. This paper will discuss challenges associated with estimating the performance of well barrier elements in existing P&A wells. Risk ranking of the existing P&A wells is to be carried out in order to ensure the integrity of the storage site is maintained for long-term CO₂ storage. High-risk existing P&A wells are to be re-entered to restore good integrity and to reduce future leakage that may happen. In addition, the requirement to design a fit-for-purpose monitoring and mitigation technology package for potential CO₂ leakage/seepage in the marine environment will be discussed accordingly. The holistic approach will ensure that the integrity is maintained, and CO₂ is contained underground for years to come.

Keywords: CCUS, well integrity, co₂ storage, offshore

Procedia PDF Downloads 86
516 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 265
515 Growth Stimulating Effects of Aspilia africana Fed to Female Pseudo-Ruminant Herbivores (Rabbits) at Different Physiological States

Authors: Nseabasi Nsikakabasi Etim

Abstract:

In recent times, there has been a significant shortfall in between the production and supply of animal protein to meet the ever increasing population. To meet the increasing demand for animal protein, there is a need to focus attention on the production of livestock whose nutritional requirement does not put much strain on the limited sources of feed ingredients to which men subscribe. An example of such livestock is the rabbit. Rabbit is a pseudo-ruminant herbivore which utilizes much undigested and unabsorbed feed materials as sources of nutrient for maintenance and production. Thus, this study was conducted to investigate the effects of feeding Aspilia africana as forage on the growth rates of female pseudo-ruminant herbivores (rabbits) at different physiological states. Thirty (30) Dutch breed rabbit does of 5–6 months of age were used for the experiment which was conducted in a completely randomized design for four months. The rabbits were divided into three treatment groups, ten does per treatment group; which consisted of mixed forages (Centrosema pubescent (200g), Panicum maximum (200g) and Ipomea batatas leaves (100g) without Aspilia africana (T1; control), fresh Aspilia africana (500g/dose/day) (T2) and wilted Aspilia africana (500g/dose/day) (T3). Rabbits in all treatment groups received the same concentrate (300g/animal/day) throughout the period of the study and mixed forages from the commencement of the experiment till the does kindled. After parturition, fresh and wilted Aspilia africana were introduced in treatments 2 and three respectively, whereas the control group continued on mixed forages throughout the study. The result of the study revealed that the initial average body weight of the rabbit does was 1.74kg. At mating and gestation periods, the body weights of the does in T2 was significantly higher (P<0.05) than the rest. There were no significant differences (P<0.05) in the body weights of does at kindling between the various treatment groups. During the physiological states of lactation, weaning and re-mating, the control group (T1) had significantly lower body weight than those of the treated groups (T2 and T3). Furthermore, T2 had significantly higher body weight than T3. The study revealed that Aspilia africana; mainly the fresh leaves have greater growth stimulating effects when fed to pseudo-ruminants (rabbits), thereby enhancing body weights of does during lactation and weaning.

Keywords: Aspilia africana, herbivores, pseudo-ruminants, physiological states

Procedia PDF Downloads 685
514 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 210
513 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 336
512 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 52
511 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 173
510 Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved.

Keywords: fire safety engineering, numerical tools, rolling stock, multi-scales validation

Procedia PDF Downloads 300
509 Multiple Intelligences as Basis for Differentiated Classroom Instruction in Technology Livelihood Education: An Impact Analysis

Authors: Sheila S. Silang

Abstract:

This research seeks to make an impact analysis on multiple intelligence as the basis for differentiated classroom instruction in TLE. It will also address the felt need of how TLE subject could be taught effectively exhausting all the possible means.This study seek the effect of giving different instruction according to the ability of the students in the following objectives: 1. student’s technological skills enhancement, 2. learning potential improvements 3. having better linkage between school and community in a need for soliciting different learning devices and materials for the learner’s academic progress. General Luna, Quezon is composed of twenty seven barangays. There are only two public high schools. We are aware that K-12 curriculum is focused on providing sufficient time for mastery of concepts and skills, develop lifelong learners, and prepare graduates for tertiary education, middle-level skills development, employment, and entrepreneurship. The challenge is with TLE offerring a vast area of specializations, how would Multiple Intelligence play its vital role as basis in classroom instruction in acquiring the requirement of the said curriculum? 1.To what extent do the respondent students manifest the following types of intelligences: Visual-Spatial, Body-Kinesthetic, Musical, Interpersonal, Intrapersonal, Verbal-Linguistic, Logical-Mathematical and Naturalistic. What media should be used appropriate to the student’s learning style? Visual, Printed Words, Sound, Motion, Color or Realia 3. What is the impact of multiple intelligence as basis for differentiated instruction in T.L.E. based on the following student’s ability? Learning Characteristic and Reading Ability and Performance 3. To what extent do the intelligences of the student relate with their academic performance? The following were the findings derived from the study: In consideration of the vast areas of study of TLE, and the importance it plays in the school curriculum coinciding with the expectation of turning students to technologically competent contributing members of the society, either in the field of Technical/Vocational Expertise or Entrepreneurial based competencies, as well as the government’s concern for it, we visualize TLE classroom teachers making use of multiple intelligence as basis for differentiated classroom instruction in teaching the subject .Somehow, multiple intelligence sample such as Linguistic, Logical-Mathematical, Bodily-Kinesthetic, Interpersonal, Intrapersonal, and Spatial abilities that an individual student may have or may not have, can be a basis for a TLE teacher’s instructional method or design.

Keywords: education, multiple, differentiated classroom instruction, impact analysis

Procedia PDF Downloads 438
508 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 196
507 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 139
506 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 242
505 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 261
504 Burden of Dengue in Northern India

Authors: Ashutosh Biswas, Poonam Coushic, Kalpana Baruah, Paras Singla, A. C. Dhariwal, Pawana Murthy

Abstract:

Burden of Dengue in Northern India Ashutosh Biswas, Poonam Coushic, Kalpana Baruah, Paras Singla, AC Dhariwal, Pawana Murthy. All India Institute of Medical Sciences, NVBDCP,WHO New Delhi, India Aim: This study was conducted to estimate the burden of dengue in capital region of India. Methodology:Seropositivity of Dengue for IgM Ab, NS1 Ag and IgG Ab were performed among the blood donors’ samples from blood bank, those who were coming to donate blood for the requirement of blood for the admitted patients in hospital. Blood samplles were collected through out the year to estimate seroprevalance of dengue with or without outbreak season. All the subjects were asymptomatic at the time of blood donation. Results: A total of 1558 donors were screened for the study. On the basis of inclusion/ exclusion criteria, we enrolled 1531subjects for the study.Twenty seven donors were excluded from the study, out of which 6 were detected HIV +ve, 11 were positive for HBsAg and 10 were found positive for HCV.Mean age was 30.51 ± 7.75 years.Of 1531subjects, 18 (1.18%) had a past history of typhoid fever, 28 (1.83%) had chikungunya fever, 9 (0.59%) had malaria and 43 subjects (2.81%) had a past history of symptomatic dengue infection.About 2.22% (34) of subjects were found to have sero-positive for NS1 Ag with a peak point prevalence of 7.14% in the month of October and sero-positive of IgM Ab was observed about 5.49% (84)with a peak point prevalence of 14.29% in the month of October. Sero-prevalnce of IgGwas detected in about 64.21% (983) of subjects. Conclusion: Acute asymptomatic dengue (NS1 Ag+ve) was observed in 7.14%, as the subjects were having no symptoms at the time of sampling. This group of subjects poses a potential public health threat for transmitting dengue infection through blood transfusion (TTI) in the community as evident by presence of active viral infection due to NS1Ag +VE. Therefore a policy may be implemented in the blood bank for testing NS1 Ag to look for active dengue infection for preventing dengue transmission through blood transfusion (TTI). Acute or Subacute dengue infection ( IgM Ab+ve) was observed from 5.49% to 14.29% which is a peak point prevalence in the month of October. About 64.21% of the population were immunized by natural dengue infection ( IgG Ab+ve) in theNorthern province of India. This might be helpful for implementing the dengue vaccine in a region. Blood samples in blood banks should be tested for dengue before transfusion to any other person to prevent transfusion transmitted dengue infection as we estimated upto 7.14% positivity of NS1 Ag in our study which indicates presence of dengue virus in blood donors’ samples.

Keywords: Dengue Burden, Seroprevalance, Asymptomatic dengue, Dengue transmission through blood transfusion

Procedia PDF Downloads 145
503 Identifying Indicative Health Behaviours and Psychosocial Factors Affecting Multi-morbidity Conditions in Ageing Populations: Preliminary Results from the ELSA study of Ageing

Authors: Briony Gray, Glenn Simpson, Hajira Dambha-Miller, Andrew Farmer

Abstract:

Multimorbidity may be strongly affected by a variety of conditions, factors, and variables requiring higher demands on health and social care services, infrastructure, and expenses. Holding one or more conditions increases one’s risk for development of future conditions; with patients over 65 years old at highest risk. Psychosocial factors such as anxiety and depression are rising exponentially globally, which has been amplified by the COVID19 pandemic. These are highly correlated and predict poorer outcomes when held in coexistence and increase the likelihood of comorbid physical health conditions. While possible future reform of social and healthcare systems may help to alleviate some of these mounting pressures, there remains an urgent need to better understand the potential role health behaviours and psychosocial conditions - such as anxiety and depression – may have on aging populations. Using the UK healthcare scene as a lens for analysis, this study uses big data collected in the UK Longitudinal Study of Aging (ELSA) to examine the role of anxiety and depression in ageing populations (65yrs+). Using logistic regression modelling, results identify the 10 most significant variables correlated with both anxiety and depression from data categorised into the areas of health behaviour, psychosocial, socioeconomic, and life satisfaction (each demonstrated through literature review to be of significance). These are compared with wider global research findings with the aim of better understanding the areas in which social and healthcare reform can support multimorbidity interventions, making suggestions for improved patient-centred care. Scope of future research is outlined, which includes analysis of 59 total multimorbidity variables from the ELSA dataset, going beyond anxiety and depression.

Keywords: multimorbidity, health behaviours, patient centred care, psychosocial factors

Procedia PDF Downloads 85
502 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 112
501 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui

Abstract:

To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 289
500 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach

Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde

Abstract:

Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.

Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment

Procedia PDF Downloads 206
499 The Link between Anthropometry and Fat-Based Obesity Indices in Pediatric Morbid Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Anthropometric measurements are essential for obesity studies. Waist circumference (WC) is the most frequently used measure, and along with hip circumference (HC), it is used in most equations derived for the evaluation of obese individuals. Morbid obesity is the most severe clinical form of obesity, and such individuals may also exhibit some clinical findings leading to metabolic syndrome (MetS). Then, it becomes a requirement to discriminate morbid obese children with (MOMetS+) and without (MOMetS-) MetS. Almost all obesity indices can differentiate obese (OB) children from children with normal body mass index (N-BMI). However, not all of them are capable of making this distinction. A recently introduced anthropometric obesity index, waist circumference + hip circumference/2 ((WC+HC)/2), was confirmed to differ OB children from those with N-BMI, however it has not been tested whether it will find clinical usage for the differential diagnosis of MOMetS+ and MOMetS-. This study was designed to find out the availability of (WC+HC)/2 for the purpose and to compare the possible preponderance of it over some other anthropometric or fat-based obesity indices. Forty-five MOMetS+ and forty-five MOMetS- children were included in the study. Participants have submitted informed consent forms. The study protocol was approved by the Non-interventional Ethics Committee of Tekirdag Namik Kemal University. Anthropometric measurements were performed. Body mass index (BMI), waist-to-hip circumference (W/H), (WC+HC)/2, trunk-to-leg fat ratio (TLFR), trunk-to-appendicular fat ratio (TAFR), trunk fat+leg fat/2 ((trunk+leg fat)/2), diagnostic obesity notation model assessment index-2 (D2I) and fat mass index (FMI) were calculated for both groups. Study data was analyzed statistically, and 0.05 for p value was accepted as the statistical significance degree. Statistically higher BMI, WC, (WC+HC)/2, (trunk+leg fat)/2 values were found in MOMetS+ children than MOMetS- children. No statistically significant difference was detected for W/H, TLFR, TAFR, D2I, and FMI between two groups. The lack of difference between the groups in terms of FMI and D2I pointed out the fact that the recently developed fat-based index; (trunk+leg fat)/2 gives much more valuable information during the evaluation of MOMetS+ and MOMetS- children. Upon evaluation of the correlations, (WC+HC)/2 was strongly correlated with D2I and FMI in both MOMetS+ and MOMetS- groups. Neither D2I nor FMI was correlated with W/H. Strong correlations were calculated between (WC+HC)/2 and (trunk+leg fat)/2 in both MOMetS- (r=0.961; p<0.001) and MOMetS+ (r=0.936; p<0.001) groups. Partial correlations between (WC+HC)/2 and (trunk+leg fat)/2 after controlling the effect of basal metabolic rate were r=0.726; p<0.001 in MOMetS- group and r=0.932; p<0.001 in MOMetS+ group. The correlation in the latter group was higher than the first group. In conclusion, recently developed anthropometric obesity index (WC+HC)/2 and fat-based obesity index (trunk+leg fat)/2 were of preponderance over the previously introduced classical obesity indices such as W/H, D2I and FMI during the differential diagnosis of MOMetS+ and MOMetS- children.

Keywords: children, hip circumference, metabolic syndrome, morbid obesity, waist circumference

Procedia PDF Downloads 285
498 Inner and Outer School Contextual Factors Associated with Poor Performance of Grade 12 Students: A Case Study of an Underperforming High School in Mpumalanga, South Africa

Authors: Victoria L. Nkosi, Parvaneh Farhangpour

Abstract:

Often a Grade 12 certificate is perceived as a passport to tertiary education and the minimum requirement to enter the world of work. In spite of its importance, many students do not make this milestone in South Africa. It is important to find out why so many students still fail in spite of transformation in the education system in the post-apartheid era. Given the complexity of education and its context, this study adopted a case study design to examine one historically underperforming high school in Bushbuckridge, Mpumalanga Province, South Africa in 2013. The aim was to gain a understanding of the inner and outer school contextual factors associated with the high failure rate among Grade 12 students.  Government documents and reports were consulted to identify factors in the district and the village surrounding the school and a student survey was conducted to identify school, home and student factors. The randomly-sampled half of the population of Grade 12 students (53) participated in the survey and quantitative data are analyzed using descriptive statistical methods. The findings showed that a host of factors is at play. The school is located in a village within a municipality which has been one of the poorest three municipalities in South Africa and the lowest Grade 12 pass rate in the Mpumalanga province.   Moreover, over half of the families of the students are single parents, 43% are unemployed and the majority has a low level of education. In addition, most families (83%) do not have basic study materials such as a dictionary, books, tables, and chairs. A significant number of students (70%) are over-aged (+19 years old); close to half of them (49%) are grade repeaters. The school itself lacks essential resources, namely computers, science laboratories, library, and enough furniture and textbooks. Moreover, teaching and learning are negatively affected by the teachers’ occasional absenteeism, inadequate lesson preparation, and poor communication skills. Overall, the continuous low performance of students in this school mirrors the vicious circle of multiple negative conditions present within and outside of the school. The complexity of factors associated with the underperformance of Grade 12 students in this school calls for a multi-dimensional intervention from government and stakeholders. One important intervention should be the placement of over-aged students and grade-repeaters in suitable educational institutions for the benefit of other students.

Keywords: inner context, outer context, over-aged students, vicious cycle

Procedia PDF Downloads 197
497 Common Health Problems of Filipino Overseas Household Service Workers: Implications for Wellness

Authors: Veronica Ramirez

Abstract:

For over 40 years now, the Philippines has been supplying Household Service Workers (HSWs) globally. As a requirement of the Philippine Overseas Employment Agency (POEA), all Filipinos applying for overseas work undergo medical examination and a certificate of good health is submitted to the foreign employer before hiring. However, there are workplace-related health problems that develop during employment such as musculoskeletal strain or injury, back pain, hypertension and other illnesses. Some workers are in good working conditions but are on call more than 12 hours per day. There are also those who experience heavy physical work with short rest periods or time off. They can also be easily exposed to disease outbreaks and epidemics. It was the objective of this study to determine the common health problems of Filipino Overseas Service Workers and analyze their implications to wellness in the workplace. Specifically, it sought to describe the work conditions of HSWs and determine the work-related factors affecting their health. It also identified the medical care they avail of and how they perceive their health and wellness as determinants of well-being. Finally, it proposes ways to promote wellness among HSWs. This study focused on physical illnesses and does not include mental problems experienced by HSWs. Using a questionnaire, primary data were gathered online and through survey of HSW rehires who were retaking Pre-Departure Orientation Seminar at recruitment agencies. The 2010 Health Benefit Availment data from the Overseas Workers Welfare Administration (OWWA) was also utilized. Descriptive analysis was employed on the data gathered. Key stakeholders in the migration industry were also interviewed. Previous research studies, reports and literature on migration and wellness were used as secondary data. The study found that Filipino overseas HSWs are vulnerable to physical injury and experience body pains such as back, hip and shoulder pain. Long hours of work, work hazards and lack of rest due to poor accommodations can aggravate their physical condition. Although health insurance and health care are available, HSWs are not aware how to avail them. On the basis of the findings, a Wellness Program can be designed that include health awareness, health care availment, occupational ergonomics, safety and health, work and leisure balance, developing emotional intelligence, anger management and spirituality.

Keywords: health, household service worker, overseas, wellness

Procedia PDF Downloads 252
496 To Compare Norepinephrine and Norepinephrine with Methylene Blue for the Management of Septic Shock

Authors: K. Rajarajeswaran, Krishna Prasad

Abstract:

Introduction: Refractory shock is a typical consequence of sepsis that does not improve with standard vasopressor therapy. A possible adjuvant therapeutic option for treating refractory shock in sepsis is methylene blue. This study looked at the effects of intravenous methylene blue plus norepinephrine given as a single bolus infusion on mortality and hemodynamic improvement in patients suffering from refractory shock. Methodology: This six-month observational prospective study was carried out at an intensive care unit, teaching hospital, and medical college. It involved 112 patients who had been diagnosed with refractory septic shock and needed vasopressor medication. Group B received injection norepinephrine 0.01 µg/kg/min infusion alone, while Group A received injection methylene blue 2 mg/kg iv single bolus (fixed dose) in addition to injection norepinephrine 0.01 µg/kg/min infusion. Both groups' noradrenaline doses were titrated to reach the desired MAP of 60–75 mm Hg. The amount of norepinephrine needed to sustain a MAP of more than 60 mm Hg was the data gathered. Serum lactate, procalcitonin level, C-reactive protein, length of stay in the intensive care unit (ICU), sequential organ failure assessment (SOFA) score, and duration of mechanical ventilation, incidence of acute kidney injury (AKI), and mortality were compared. Results: A total of 112 patients with refractory shock were included in the study. With the use of IV methylene blue, 36 (59.3%) patients showed significant improvement in MAP within 2 hours (77.12 ± 8.90 vs 74.28 ± 21.84, p = 0.005). Responders were 4.009 times more likely to have vasopressor-free time within 24 hours (19.5% vs 6.1%, p = 0.022, odds ratio 5.017, 95% confidence interval, 1.110–14.283). The serum lactate was lower, and urine output was higher in group I than in group II (p <0.05). Group I had a significantly greater reduction in SOFA score in 12 hours than group II. However, there was no significant difference in terms of mortality, length of ICU stay, ventilator free days, and incidence of AKI. In the responder group, there was a significant increase in the MAP and decrease in vasopressor requirement pre- and post-infusion of methylene blue (p < 0.05). Responder had shorter vasopressor-free days as compared with non-responder (5.44 vs 6.99, p = 0.007). Conclusion: When administered as adjuvant therapy, a single-dose bolus infusion of Methylene Blue plus Norepinephrine may aid in meeting early resuscitation goals for the management of patients with septic shock. But the patients' death rate, ICU stay duration, ventilator-free days, or incidence of AKI were unchanged.

Keywords: norepinephrine, methylene blue, shock, vasopressor

Procedia PDF Downloads 12
495 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors

Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller

Abstract:

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.

Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault

Procedia PDF Downloads 47
494 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: D. Ramajo, S. Corzo, M. Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow

Procedia PDF Downloads 466
493 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore

Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong

Abstract:

Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.

Keywords: hydrology, modeling, water quality, wetland

Procedia PDF Downloads 137
492 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

Authors: M. A. Okezue, K. L. Clase, S. R. Byrn

Abstract:

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets

Procedia PDF Downloads 165
491 Long-Term Modal Changes in International Traffic - Modelling Exercise

Authors: Tomasz Komornicki

Abstract:

The primary aim of the presentation is to try to model border traffic and, at the same time to explain on which economic variables the intensity of border traffic depended in the long term. For this purpose, long series of traffic data on the Polish borders were used. Models were estimated for three variants of explanatory variables: a) for total arrivals and departures (total movement of Poles and foreigners), b) for arrivals and departures of Poles, and c) for arrivals and departures of foreigners. Each of the defined explanatory variables in the models appeared as the logarithm of the natural number of persons. Data from 1994-2017 were used for modeling (for internal Schengen borders for the years 1994-2007). Information on the number of people arriving in and leaving Poland was collected for a total of 303 border crossings. On the basis of the analyses carried out, it was found that one of the main factors determining border traffic is generally differences in the level of economic development (GDP) and the condition of the economy (level of unemployment) and the degree of border permeability. Also statistically significant for border traffic are differences in the prices of goods (fuels, tobacco, and alcohol products) and services (mainly basic ones, e.g., hairdressing services). Such a relationship exists mainly on the eastern border (border traffic determined largely by differences in the prices of goods) and on the border with Germany (in the first analysed period, border traffic was determined mainly by the prices of goods, later - after Poland's accession to the EU and the Schengen area - also by the prices of services). The models also confirmed differences in the set of factors shaping the volume and structure of border traffic on the Polish borders resulting from general geopolitical conditions, with the year 2007 being an important caesura, after which the classical population mobility factors became visible. The results obtained were additionally related to changes in traffic that occurred as a result of the CPOVID-19 pandemic and as a result of the Russian aggression against Ukraine.

Keywords: border, modal structure, transport, Ukraine

Procedia PDF Downloads 106
490 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 162
489 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 134