Search results for: quantum algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2465

Search results for: quantum algorithms

2225 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data

Authors: Rishabh Srivastav, Divyam Sharma

Abstract:

We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.

Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets

Procedia PDF Downloads 212
2224 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation

Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang

Abstract:

Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².

Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres

Procedia PDF Downloads 11
2223 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 42
2222 Chaos in a Stadium-Shaped 2-D Quantum Dot

Authors: Roger Yu

Abstract:

A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated.

Keywords: quantum dot, chaos, numerical method, eigenvalues

Procedia PDF Downloads 88
2221 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films

Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh

Abstract:

According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.

Keywords: memristor, quantum dot, resistive switching, thin film

Procedia PDF Downloads 96
2220 Generalized Dirac oscillators Associated to Non-Hermitian Quantum Mechanical Systems

Authors: Debjit Dutta, P. Roy, O. Panella

Abstract:

In recent years, non Hermitian interaction in non relativistic as well as relativistic quantum mechanics have been examined from various aspect. We can observe interesting fact that for such systems a class of potentials, namely the PT symmetric and η-pseudo Hermitian admit real eigenvalues despite being non Hermitian and analogues of those system have been experimentally verified. Point to be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical structures and also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator. We have thoroughly studied generalized Dirac oscillators with non Hermitian interactions in (1 + 1) dimensions. To be more specific, we have examined η pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) dimensions. In particular, we have obtained a class of interactions which are η-pseudo Hermitian and the metric operator η could have been also found explicitly. It is possible to have exact solutions of the generalized Dirac oscillator for some choices of the interactions. Subsequently we have employed the mapping between the generalized Dirac oscillator and the Jaynes Cummings (JC) model by spin flip to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings (AJC) type models.

Keywords: Dirac oscillator, non-Hermitian quantum system, Hermitian, relativistic

Procedia PDF Downloads 432
2219 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 635
2218 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 25
2217 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 266
2216 Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices

Authors: Bentata Samir, Bendahma Fatima

Abstract:

We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.

Keywords: superlattices, transfer matrix method, transmission coefficient, quantum laser

Procedia PDF Downloads 452
2215 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods

Authors: Issa Qabaja, Fadi Thabtah

Abstract:

Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.

Keywords: data mining, email classification, phishing, online security

Procedia PDF Downloads 402
2214 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security

Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama

Abstract:

This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.

Keywords: optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, steganalysis heuristic approach

Procedia PDF Downloads 268
2213 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study

Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin

Abstract:

Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.

Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)

Procedia PDF Downloads 579
2212 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 72
2211 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy

Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini

Abstract:

Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers

Keywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs

Procedia PDF Downloads 156
2210 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 415
2209 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking

Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser

Abstract:

The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.

Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC

Procedia PDF Downloads 399
2208 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 181
2207 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning

Procedia PDF Downloads 80
2206 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots

Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang

Abstract:

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.

Keywords: graphene, quantum dot, size, photoluminescence

Procedia PDF Downloads 267
2205 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism

Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.

Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation

Procedia PDF Downloads 31
2204 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking

Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye

Abstract:

The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.

Keywords: algorithm, cryptography, cryptosystem, network

Procedia PDF Downloads 316
2203 Metaphysics of the Unified Field of the Universe

Authors: Santosh Kaware, Dnyandeo Patil, Moninder Modgil, Hemant Bhoir, Debendra Behera

Abstract:

The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'.

Keywords: super string theory, Planck scale geometry, negentropy, super quantum gravity

Procedia PDF Downloads 243
2202 Virtual 3D Environments for Image-Based Navigation Algorithms

Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka

Abstract:

This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.

Keywords: simulation, visual navigation, mobile robot, data visualization

Procedia PDF Downloads 226
2201 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 112
2200 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations

Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu

Abstract:

This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.

Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform

Procedia PDF Downloads 313
2199 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 465
2198 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 208
2197 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2

Authors: Rayenne Djemil

Abstract:

The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.

Keywords: echanism, quantum mechanics, oxidation, linoleic acid H

Procedia PDF Downloads 413
2196 Modeling of Silicon Window Layers for Solar Cells Based SIGE

Authors: Meriem Boukais, B. Dennai, A. Ould- Abbas

Abstract:

The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).

Keywords: modeling, SiGe, AMPS-1D, quantum efficiency, conversion, efficiency

Procedia PDF Downloads 687