Search results for: Hermitian
10 Generalized Dirac oscillators Associated to Non-Hermitian Quantum Mechanical Systems
Authors: Debjit Dutta, P. Roy, O. Panella
Abstract:
In recent years, non Hermitian interaction in non relativistic as well as relativistic quantum mechanics have been examined from various aspect. We can observe interesting fact that for such systems a class of potentials, namely the PT symmetric and η-pseudo Hermitian admit real eigenvalues despite being non Hermitian and analogues of those system have been experimentally verified. Point to be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical structures and also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator. We have thoroughly studied generalized Dirac oscillators with non Hermitian interactions in (1 + 1) dimensions. To be more specific, we have examined η pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) dimensions. In particular, we have obtained a class of interactions which are η-pseudo Hermitian and the metric operator η could have been also found explicitly. It is possible to have exact solutions of the generalized Dirac oscillator for some choices of the interactions. Subsequently we have employed the mapping between the generalized Dirac oscillator and the Jaynes Cummings (JC) model by spin flip to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings (AJC) type models.Keywords: Dirac oscillator, non-Hermitian quantum system, Hermitian, relativistic
Procedia PDF Downloads 4589 Degeneracy and Defectiveness in Non-Hermitian Systems with Open Boundary
Authors: Yongxu Fu, Shaolong Wan
Abstract:
We study the band degeneracy, defectiveness, as well as exceptional points of non-Hermitian systems and materials analytically. We elaborate on the energy bands, the band degeneracy, and the defectiveness of eigenstates under open boundary conditions based on developing a general theory of one-dimensional (1D) non-Hermitian systems. We research the presence of the exceptional points in a generalized non-Hermitian Su-Schrieffer-Heeger model under open boundary conditions. Beyond our general theory, there exist infernal points in 1D non-Hermitian systems, where the energy spectra under open boundary conditions converge on some discrete energy values. We study two 1D non-Hermitian models with the existence of infernal points. We generalize the infernal points to the infernal knots in four-dimensional non-Hermitian systems.Keywords: non-hermitian, degeneracy, defectiveness, exceptional points, infernal points
Procedia PDF Downloads 1298 Exact Formulas of the End-To-End Green’s Functions in Non-hermitian Systems
Authors: Haoshu Li, Shaolong Wan
Abstract:
The recent focus has been on directional signal amplification of a signal input at one end of a one-dimensional chain and measured at the other end. The amplification rate is given by the end-to-end Green’s functions of the system. In this work, we derive the exact formulas for the end-to-end Green's functions of non-Hermitian single-band systems. While in the bulk region, it is found that the Green's functions are displaced from the prior established integral formula by O(e⁻ᵇᴸ). The results confirm the correspondence between the signal amplification and the non-Hermitian skin effect.Keywords: non-Hermitian, Green's function, non-Hermitian skin effect, signal amplification
Procedia PDF Downloads 1407 Photon Blockade in Non-Hermitian Optomechanical Systems with Nonreciprocal Couplings
Authors: J. Y. Sun, H. Z. Shen
Abstract:
We study the photon blockade at exceptional points for a non-Hermitian optomechanical system coupled to the driven whispering-gallery-mode microresonator with two nanoparticles under the weak optomechanical coupling approximation, where exceptional points emerge periodically by controlling the relative angle of the nanoparticles. We find that conventional photon blockade occurs at exceptional points for the eigenenergy resonance of the single-excitation subspace driven by a laser field and discuss the physical origin of conventional photon blockade. Under the weak driving condition, we analyze the influences of the different parameters on conventional photon blockade. We investigate conventional photon blockade at nonexceptional points, which exists at two optimal detunings due to the eigenstates in the single-excitation subspace splitting from one (coalescence) at exceptional points to two at nonexceptional points. Unconventional photon blockade can occur at nonexceptional points, while it does not exist at exceptional points since the destructive quantum interference cannot occur due to the two different quantum pathways to the two-photon state not being formed. The realization of photon blockade in our proposal provides a viable and flexible way for the preparation of single-photon sources in the non-Hermitian optomechanical system.Keywords: optomechanical systems, photon blockade, non-hermitian, exceptional points
Procedia PDF Downloads 1406 Quantum Algebra from Generalized Q-Algebra
Authors: Muna Tabuni
Abstract:
The paper contains an investigation of the notion of Q algebras. A brief introduction to quantum mechanics is given, in that systems the state defined by a vector in a complex vector space H which have Hermitian inner product property. H may be finite or infinite-dimensional. In quantum mechanics, operators must be hermitian. These facts are saved by Lie algebra operators but not by those of quantum algebras. A Hilbert space H consists of a set of vectors and a set of scalars. Lie group is a differentiable topological space with group laws given by differentiable maps. A Lie algebra has been introduced. Q-algebra has been defined. A brief introduction to BCI-algebra is given. A BCI sub algebra is introduced. A brief introduction to BCK=BCH-algebra is given. Every BCI-algebra is a BCH-algebra. Homomorphism maps meanings are introduced. Homomorphism maps between two BCK algebras are defined. The mathematical formulations of quantum mechanics can be expressed using the theory of unitary group representations. A generalization of Q algebras has been introduced, and their properties have been considered. The Q- quantum algebra has been studied, and various examples have been given.Keywords: Q-algebras, BCI, BCK, BCH-algebra, quantum mechanics
Procedia PDF Downloads 1975 Tailoring the Parameters of the Quantum MDS Codes Constructed from Constacyclic Codes
Authors: Jaskarn Singh Bhullar, Divya Taneja, Manish Gupta, Rajesh Kumar Narula
Abstract:
The existence conditions of dual containing constacyclic codes have opened a new path for finding quantum maximum distance separable (MDS) codes. Using these conditions parameters of length n=(q²+1)/2 quantum MDS codes were improved. A class of quantum MDS codes of length n=(q²+q+1)/h, where h>1 is an odd prime, have also been constructed having large minimum distance and these codes are new in the sense as these are not available in the literature.Keywords: hermitian construction, constacyclic codes, cyclotomic cosets, quantum MDS codes, singleton bound
Procedia PDF Downloads 3864 Airy Wave Packet for a Particle in a Time-Dependant Linear Potential
Authors: M. Berrehail, F. Benamira
Abstract:
We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its EigenfunctionKeywords: airy wave packet, ivariant, time-dependent linear potential, unitary transformation
Procedia PDF Downloads 4913 A Survey on Linear Time Invariant Multivariable Positive Real Systems
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties
Procedia PDF Downloads 2732 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions
Authors: Suleiman Bashir Adamu, Lawan Sani Taura
Abstract:
We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schrödinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained.Keywords: Eigenvalues, Eigenfunction, Hamiltonian, Klein- Gordon equation, PT-symmetric quantum mechanics
Procedia PDF Downloads 3821 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems
Authors: Riadh Zorgati, Thomas Triboulet
Abstract:
In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix
Procedia PDF Downloads 133