Search results for: predictive decision
4866 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1404865 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.Keywords: additive manufacturing, decision-makings, environmental impact, predictive models
Procedia PDF Downloads 1294864 An Assessment of Airport Collaborative Decision-Making System Using Predictive Maintenance
Authors: Faruk Aras, Melih Inal, Tansel Cinar
Abstract:
The coordination of airport staff especially in the operations and maintenance departments is important for the airport operation. As a result, this coordination will increase the efficiency in all operation. Therefore, a Collaborative Decision-Making (CDM) system targets on improving the overall productivity of all operations by optimizing the use of resources and improving the predictability of actions. Enlarged productivity can be of major benefit for all airport operations. It also increases cost-efficiency. This study explains how predictive maintenance using IoT (Internet of Things), predictive operations and the statistical data such as Mean Time To Failure (MTTF) improves airport terminal operations and utilize airport terminal equipment in collaboration with collaborative decision making system/Airport Operation Control Center (AOCC). Data generated by the predictive maintenance methods is retrieved and analyzed by maintenance managers to predict when a problem is about to occur. With that information, maintenance can be scheduled when needed. As an example, AOCC operator would have chance to assign a new gate that towards to this gate all the equipment such as travellator, elevator, escalator etc. are operational if the maintenance team is in collaboration with AOCC since maintenance team is aware of the health of the equipment because of predictive maintenance methods. Applying predictive maintenance methods based on analyzing the health of airport terminal equipment dramatically reduces the risk of downtime by on time repairs. We can classify the categories as high priority calls for urgent repair action, as medium priority requires repair at the earliest opportunity, and low priority allows maintenance to be scheduled when convenient. In all cases, identifying potential problems early resulted in better allocation airport terminal resources by AOCC.Keywords: airport, predictive maintenance, collaborative decision-making system, Airport Operation Control Center (AOCC)
Procedia PDF Downloads 3644863 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 174862 Contribution to the Decision-Making Process for Selecting the Suitable Maintenance Policy
Authors: Nasser Y. Mahamoud, Pierre Dehombreux, Hassan E. Robleh
Abstract:
Industrial companies may be confronted with questions about their choice of maintenance policy. This choice must be guided by several numbers of decision criteria or objectives related to their production or service activities but also to their level of development and their investment prospects. A decision-support methodology to choose a maintenance policy (corrective, systematic or conditional preventive, predictive, opportunistic or not) is proposed to facilitate this choice using the main categories of the most important decision criteria. The different steps of this methodology are illustrated using theoretical case: identification of the different maintenance alternatives, determining the structure of the most important categories of the decision criteria, assessing the different maintenance policies on to the criteria by using an ordinal preference relation, and finally ranking the different maintenance policies.Keywords: maintenance policy, decision criteria, decision-making process, AHP
Procedia PDF Downloads 3304861 Redefining Infrastructure as Code Orchestration Using AI
Authors: Georges Bou Ghantous
Abstract:
This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making
Procedia PDF Downloads 324860 The Predictive Role of Attachment and Adjustment in the Decision-Making Process in Infertility
Authors: A. Luli, A. Santona
Abstract:
It is rare for individuals that are involved in a relationship to think about the possibility of having procreation problems in the near present or in the future. However, infertility is a condition that affects millions of people all around the world. Often, infertile individuals have to deal with experiences of psychological, relational and social problems. In these cases, they have to review their choices and take into consideration, if it is necessary, new ones. Different studies have examined the different decisions that infertile individuals have to go through dealing with infertility and its treatment, but none of them is focused on the decision-making style used by infertile individuals to solve their problem and on the factors that influences it. The aim of this paper is to define the style of decision-making used by infertile persons to give a solution to the ‘problem’ and the potential predictive role of the attachment and of the dyadic adjustment. The total sample is composed by 251 participants, divided in two groups: the experimental group composed by 114 participants, 62 males and 52 females, age between 25 and 59 years, and the control group composed by 137 participants, 65 males and 72 females, age between 22 and 49 years. The battery of instruments used is composed by: the General Decision Making Style (GDMS), the Experiences in Close Relationships Questionnaire Revised (ECR-R), Dyadic Adjustment Scale (DAS), and the Symptom Checklist-90-R (SCL-90-R). The results from the analysis of the samples showed a prevalence of the rational decision-making style for both males and females. No significant statistical difference was found between the experimental and control group. Also the analyses showed a significant statistical relationship between the decision making styles and the adult attachment styles for both males and females. In this case, only for males, there was a significant statistical difference between the experimental and the control group. Another significant statistical relationship was founded between the decision making styles and the adjustment scales for both males and females. Also in this case, the difference between the two groups was founded to be significant only of males. These results contribute to enrich the literature on the subject of decision-making styles in infertile individuals, showing also the predictive role of the attachment styles and the adjustment, confirming in this was the few results in the literature.Keywords: adjustment, attachment, decision-making style, infertility
Procedia PDF Downloads 3324859 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study explores an advanced approach to enhancing B2B sales forecasting by integrating machine learning models with a rule-based decision framework. The methodology begins with the development of a machine learning classification model to predict conversion likelihood, aiming to improve accuracy over traditional methods like logistic regression. The classification model's effectiveness is measured using metrics such as accuracy, precision, recall, and F1 score, alongside a feature importance analysis to identify key predictors. Following this, a machine learning regression model is used to forecast sales value, with the objective of reducing mean absolute error (MAE) compared to linear regression techniques. The regression model's performance is assessed using MAE, root mean square error (RMSE), and R-squared metrics, emphasizing feature contribution to the prediction. To bridge the gap between predictive analytics and decision-making, a rule-based decision model is introduced that prioritizes customers based on predefined thresholds for conversion probability and predicted sales value. This approach significantly enhances customer prioritization and improves overall sales performance by increasing conversion rates and optimizing revenue generation. The findings suggest that this combined framework offers a practical, data-driven solution for sales teams, facilitating more strategic decision-making in B2B environments.Keywords: sales forecasting, machine learning, rule-based decision model, customer prioritization, predictive analytics
Procedia PDF Downloads 174858 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK
Authors: Mais Khader, Xingjie Wei
Abstract:
This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.Keywords: company survival, entrepreneurship, females, machine learning, SMEs
Procedia PDF Downloads 1004857 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 1734856 Application of Fractional Model Predictive Control to Thermal System
Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi
Abstract:
The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control
Procedia PDF Downloads 4094855 Data-Driven Crop Advisory – A Use Case on Grapes
Authors: Shailaja Grover, Purvi Tiwari, Vigneshwaran S. R., U. Dinesh Kumar
Abstract:
In India, grapes are one of the most important horticulture crops. Grapes are most vulnerable to downy mildew, which is one of the most devasting diseases. In the absence of a precise weather-based advisory system, farmers spray pesticides on their crops extensively. There are two main challenges associated with using these pesticides. Firstly, most of these sprays were panic sprays, which could have been avoided. Second, farmers use more expensive "Preventive and Eradicate" chemicals than "Systemic, Curative and Anti-sporulate" chemicals. When these chemicals are used indiscriminately, they can enter the fruit and cause health problems such as cancer. This paper utilizes decision trees and predictive modeling techniques to provide grape farmers with customized advice on grape disease management. This model is expected to reduce the overall use of chemicals by approximately 50% and the cost by around 70%. Most of the grapes produced will have relatively low residue levels of pesticides, i.e., below the permissible level.Keywords: analytics in agriculture, downy mildew, weather based advisory, decision tree, predictive modelling
Procedia PDF Downloads 734854 Image Steganography Using Predictive Coding for Secure Transmission
Authors: Baljit Singh Khehra, Jagreeti Kaur
Abstract:
In this paper, steganographic strategy is used to hide the text file inside an image. To increase the storage limit, predictive coding is utilized to implant information. In the proposed plan, one can exchange secure information by means of predictive coding methodology. The predictive coding produces high stego-image. The pixels are utilized to insert mystery information in it. The proposed information concealing plan is powerful as contrasted with the existing methodologies. By applying this strategy, a provision helps clients to productively conceal the information. Entropy, standard deviation, mean square error and peak signal noise ratio are the parameters used to evaluate the proposed methodology. The results of proposed approach are quite promising.Keywords: cryptography, steganography, reversible image, predictive coding
Procedia PDF Downloads 4154853 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1494852 Temperature Control Improvement of Membrane Reactor
Authors: Pornsiri Kaewpradit, Chalisa Pourneaw
Abstract:
Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.Keywords: model predictive control, batch reactor, temperature control, membrane reactor
Procedia PDF Downloads 4664851 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 2294850 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2564849 The Role of Artificial Intelligence in Criminal Procedure
Authors: Herke Csongor
Abstract:
The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment
Procedia PDF Downloads 374848 Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods
Authors: Fatih Tarlak
Abstract:
Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life.Keywords: shelf-life, growth model, predictive microbiology, simulation
Procedia PDF Downloads 2104847 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 4304846 Attachment and Decision-Making in Infertility
Authors: Anisa Luli, Alessandra Santona
Abstract:
Wanting a child and experiencing the impossibility to conceive is a painful condition that often is linked to infertility and often leads infertile individuals to experience psychological, relational and social problems. In this situation, infertile couples have to review their choices and take into consideration new ones. Few studies have focused on the decision-making style used by infertile individuals to solve their problem and on the factors that influences it. The aim of this paper is to define the style of decision-making used by infertile persons to give a solution to the “problem” and the predictive role of the attachment, of the representations of the relationship with parents in childhood and of the dyadic adjustment. The total sample is composed by 251 participants, divided in two groups: the experimental group composed by 114 participants, 62 males and 52 females, age between 25 and 59 years, and the control group composed by 137 participants, 65 males and 72 females, age between 22 and 49 years. The battery of instruments comprises: General Decision Making Style (GDMS), Experiences in Close Relationships Questionnaire Revised (ECR-R), Dyadic Adjustment Scale (DAS), Parental Bonding Instrument (PBI) and Symptom Checklist-90-R (SCL-90-R). The results from the analysis of the samples showed a prevalence of the rational decision-making style for both males and females, experimental and control group. There have been founded significant statistical relationships between the attachment scales, the representations of the parenting style, the dyadic adjustment and the decision-making styles. These results contribute to enrich the literature on the subject of decision-making in infertile people and show the relationship between the attachment and decision-making styles, confirming the few results in literature.Keywords: attachment, decision-making style, infertility, dyadic adjustment
Procedia PDF Downloads 5764845 The Predictive Significance of Metastasis Associated in Colon Cancer-1 (MACC1) in Primary Breast Cancer
Authors: Jasminka Mujic, Karin Milde-Langosch, Volkmar Mueller, Mirza Suljagic, Tea Becirevic, Jozo Coric, Daria Ler
Abstract:
MACC1 (metastasis associated in colon cancer-1) is a prognostic biomarker for tumor progression, metastasis, and survival of a variety of solid cancers. MACC1 also causes tumor growth in xenograft models and acts as a master regulator of the HGF/MET signaling pathway. In breast cancer, the expression of MACC1 determined by immunohistochemistry was significantly associated with positive lymph node status and advanced clinical stage. The aim of the present study was to further investigate the prognostic or predictive value of MACC1 expression in breast cancer using western blot analysis and immunohistochemistry. The results of our study have shown that high MACC1 expression in breast cancer is associated with shorter disease-free survival, especially in node-negative tumors. The MACC1 might be a suitable biomarker to select patients with a higher probability of recurrence which might benefit from adjuvant chemotherapy. Our results support a biologic role and potentially open the perspective for the use of MACC1 as predictive biomarker for treatment decision in breast cancer patients.Keywords: breast cancer, biomarker, HGF/MET, MACC1
Procedia PDF Downloads 2314844 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV
Procedia PDF Downloads 3074843 A Straightforward Approach for Determining the Weights of Decision Makers Based on Angle Cosine and Projection Method
Authors: Qiang Yang, Ping-An Du
Abstract:
Group decision making with multiple attribute has attracted intensive concern in the decision analysis area. This paper assumes that the contributions of all the decision makers (DMs) are not equal to the decision process based on different knowledge and experience in group setting. The aim of this paper is to develop a novel approach to determine weights of DMs in the group decision making problems. In this paper, the weights of DMs are determined in the group decision environment via angle cosine and projection method. First of all, the average decision of all individual decisions is defined as the ideal decision. After that, we define the weight of each decision maker (DM) by aggregating the angle cosine and projection between individual decision and ideal decision with associated direction indicator μ. By using the weights of DMs, all individual decisions are aggregated into a collective decision. Further, the preference order of alternatives is ranked in accordance with the overall row value of collective decision. Finally, an example in a chemical company is provided to illustrate the developed approach.Keywords: angel cosine, ideal decision, projection method, weights of decision makers
Procedia PDF Downloads 3764842 A Predictive Analytics Approach to Project Management: Reducing Project Failures in Web and Software Development Projects
Authors: Tazeen Fatima
Abstract:
Use of project management in web & software development projects is very significant. It has been observed that even with the application of effective project management, projects usually do not complete their lifecycle and fail. To minimize these failures, key performance indicators have been introduced in previous studies to counter project failures. However, there are always gaps and problems in the KPIs identified. Despite of incessant efforts at technical and managerial levels, projects still fail. There is no substantial approach to identify and avoid these failures in the very beginning of the project lifecycle. In this study, we aim to answer these research problems by analyzing the concept of predictive analytics which is a specialized technology and is very easy to use in this era of computation. Project organizations can use data gathering, compute power, and modern tools to render efficient Predictions. The research aims to identify such a predictive analytics approach. The core objective of the study was to reduce failures and introduce effective implementation of project management principles. Existing predictive analytics methodologies, tools and solution providers were also analyzed. Relevant data was gathered from projects and was analyzed via predictive techniques to make predictions well advance in time to render effective project management in web & software development industry.Keywords: project management, predictive analytics, predictive analytics methodology, project failures
Procedia PDF Downloads 3464841 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 914840 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 2714839 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 4954838 Complex Decision Rules in the Form of Decision Trees
Authors: Avinash S. Jagtap, Sharad D. Gore, Rajendra G. Gurao
Abstract:
Decision rules become more and more complex as the number of conditions increase. As a consequence, the complexity of the decision rule also influences the time complexity of computer implementation of such a rule. Consider, for example, a decision that depends on four conditions A, B, C and D. For simplicity, suppose each of these four conditions is binary. Even then the decision rule will consist of 16 lines, where each line will be of the form: If A and B and C and D, then action 1. If A and B and C but not D, then action 2 and so on. While executing this decision rule, each of the four conditions will be checked every time until all the four conditions in a line are satisfied. The minimum number of logical comparisons is 4 whereas the maximum number is 64. This paper proposes to present a complex decision rule in the form of a decision tree. A decision tree divides the cases into branches every time a condition is checked. In the form of a decision tree, every branching eliminates half of the cases that do not satisfy the related conditions. As a result, every branch of the decision tree involves only four logical comparisons and hence is significantly simpler than the corresponding complex decision rule. The conclusion of this paper is that every complex decision rule can be represented as a decision tree and the decision tree is mathematically equivalent but computationally much simpler than the original complex decision ruleKeywords: strategic, tactical, operational, adaptive, innovative
Procedia PDF Downloads 2854837 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists
Authors: Sakul Jariyachansit
Abstract:
The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.Keywords: factor, decision making, ASEAN tourists, tourism in Thailand
Procedia PDF Downloads 206