Search results for: plant tissue
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4798

Search results for: plant tissue

4768 In Vitro Propagation in Barleria prionitis L. Via Callus Organogenesis

Authors: Rashmi Ranade, Neelu Joshi

Abstract:

Barleria prionitis L. is a well explored Indian medicinal plant valued for its stem and leaf which forms an important ingredient of many Ayurvedic formulations. It is used for the treatment of various disorders like toothache, bleeding gums, strengthening gums, whooping cough, inflammation, arthritis, enlargement of scrotum and sciatica etc. The plant is propagated vegetatively through stem cuttings. Frequent harvesting of this plant has led to the shortage of planting material, and it has acquired the status of vulnerable plant species. Plant tissue culture technology offers a very good alternative for propagation and conservation of such plant species. The present investigation was undertaken to develop in vitro regeneration protocol for B. prionitis L. via callus organogenesis pathway. Stem and leaf explants were used for this purpose. Different media and plant growth regulators were optimized to develop the protocol. The problem of phenol secretion and browning and in vitro cultures at the establishment phase was successfully curbed with the usage of antibrowning agents such as ascorbic acid and activated charcoal. Optimum shoot multiplication was achieved by the use of liquid media and incorporation of silver nitrate and TIBA (triiodobenzoic acid) into the media. High percent rooting (76%) was observed on WPM media supplemented with IBA (2.0 mg/l), IAA (0.5 mg/l), GA3(0.5) and activated charcoal(500 mg/l). The rooted plantlets were subjected to in vitro hardening on sterile potting mix (soil:farmyard manure:compost; 1:2:1) and acclimatized under greenhouse conditions. Around 85% survival of plantlets was recorded upon acclimatization. This lab scale protocol would be tested for in vitro scaling up production of B. prionitis L.

Keywords: explant browning, liquid culture, micropropagation, shoot multiplication, phenolic secretion

Procedia PDF Downloads 252
4767 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant

Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan

Abstract:

Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.

Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis

Procedia PDF Downloads 337
4766 Self-Regenerating, Vascularizing Hybrid Scaffold-Hydrogel For Bone Tissue Engineering

Authors: Alisha Gupta

Abstract:

Osteoarthritis (OA) is the most common form of arthritis which is a degenerative joint disease causing joints to begin to break down and underlying bones to change. This “wear and tear” most frequently affects hands, hips, and knees. This is important because OA pain is considered to be a leading cause of mobility impairment in older adults, with hip and knee OA ranked 11th highest contributors to global disability. Bone tissue engineering utilizing polymer scaffolds and hydrogels is an emerging field for treating osteoarthritis. Polymer scaffolds provide a three-dimensional structure for tissue growth, and hydrogels can be used to deliver drugs and growth factors. The combination of the two materials creates a hybrid structure that can better withstand physiological and mechanical demands while also providing a more controlled environment for drug and nutrient delivery. I think using bone tissue engineering for making scaffold-hydrogel composites that are self-regenerating and vascularizing might be useful in solving this problem. Successful implementation can reconstruct healthy, simulated bone tissue on deficient applicants.

Keywords: tissue engineering, regenerative medicine, scaffold-hydrogel composites, osteoarthritis

Procedia PDF Downloads 77
4765 A Review on Bone Grafting, Artificial Bone Substitutes and Bone Tissue Engineering

Authors: Kasun Gayashan Samarawickrama

Abstract:

Bone diseases, defects, and fractions are commonly seen in modern life. Since bone is regenerating dynamic living tissue, it will undergo healing process naturally, it cannot recover from major bone injuries, diseases and defects. In order to overcome them, bone grafting technique was introduced. Gold standard was the best method for bone grafting for the past decades. Due to limitations of gold standard, alternative methods have been implemented. Apart from them artificial bone substitutes and bone tissue engineering have become the emerging methods with technology for bone grafting. Many bone diseases and defects will be healed permanently with these promising techniques in future.

Keywords: bone grafting, gold standard, bone substitutes, bone tissue engineering

Procedia PDF Downloads 275
4764 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering

Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad

Abstract:

The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.

Keywords: scaffolds, porosity, diffusion, transient analysis

Procedia PDF Downloads 509
4763 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology

Authors: Yunwei Zhang, Na Li, Yuhong Niu

Abstract:

Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.

Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection

Procedia PDF Downloads 111
4762 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period.

Keywords: lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS

Procedia PDF Downloads 290
4761 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India

Authors: Sachin Kamble, Shradha Gawankar

Abstract:

This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.

Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management

Procedia PDF Downloads 268
4760 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 145
4759 Enhancing of Laser Imaging by Using Ultrasound Effect

Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar

Abstract:

The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.

Keywords: tissue, laser, ultrasound, effect, imaging

Procedia PDF Downloads 396
4758 Comparison of Nucleic Acid Extraction Platforms On Tissue Samples

Authors: Siti Rafeah Md Rafei, Karen Wang Yanping, Park Mi Kyoung

Abstract:

Tissue samples are precious supply for molecular studies or disease identification diagnosed using molecular assays, namely real-time PCR (qPCR). It is critical to establish the most favorable nucleic acid extraction that gives the PCR-amplifiable genomic DNA. Furthermore, automated nucleic acid extraction is an appealing alternative to labor-intensive manual methods. Operational complexity, defined as the number of steps required to obtain an extracted sample, is one of the criteria in the comparison. Here we are comparing the One BioMed’s automated X8 platform with the commercially available manual-operated kits from QIAGEN Mini Kit and Roche. We extracted DNA from rat fresh-frozen tissue (from different type of organs) in the matrices. After tissue pre-treatment, it is added to the One BioMed’s X8 pre-filled cartridge, and the QIAGEN QIAmp column respectively. We found that the results after subjecting the eluates to the Real Time PCR using BIORAD CFX are comparable.

Keywords: DNA extraction, frozen tissue, PCR, qPCR, rat

Procedia PDF Downloads 122
4757 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads

Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin

Abstract:

Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.

Keywords: FEM, tissue, indentation, properties

Procedia PDF Downloads 335
4756 Comparison of Different DNA Extraction Platforms with FFPE tissue

Authors: Wang Yanping Karen, Mohd Rafeah Siti, Park MI Kyoung

Abstract:

Formalin-fixed paraffin embedded (FFPE) tissue is important in the area of oncological diagnostics. This method of preserving tissues enabling them to be stored easily at ambient temperature for a long time. This decreases the risk of losing the DNA quantity and quality after extraction, reducing sample wastage, and making FFPE more cost effective. However, extracting DNA from FFPE tissue is a challenge as DNA purified is often highly cross-linked, fragmented, and degraded. In addition, this causes problems for many downstream processes. In this study, there will be a comparison of DNA extraction efficiency between One BioMed’s Xceler8 automated platform with commercial available extraction kits (Qiagen and Roche). The FFPE tissue slices were subjected to deparaffinization process, pretreatment and then DNA extraction using the three mentioned platforms. The DNA quantity were determined with real-time PCR (BioRad CFX ) and gel electrophoresis. The amount of DNA extracted with the One BioMed’s X8 platform was found to be comparable with the other two manual extraction kits.

Keywords: DNA extraction, FFPE tissue, qiagen, roche, one biomed X8

Procedia PDF Downloads 70
4755 Suitability Evaluation of CNW as Scaffold for Osteoblast

Authors: Hoo Cheol Lee, Dae Seung Kim, Sang Myung Jung, Gwang Heum Yoon, Hwa Sung Shin

Abstract:

Loss of bone tissue can occur due to a bone tissue disease and aging or fracture. Renewable formation of bone is mainly made by its differentiation and metabolism. For this reason, osteoblasts have been studied for regeneration of bone tissue. So, tissue engineering has attracted attention as a recovery means. In tissue engineering, a particularly important factor is a scaffold that supports cell growth. For osteoblast scaffold, we used the cellulose nanowhisker (CNW) extracted from marine organism. CNW is one of an abundant material obtained from a number of plants and animals. CNW is polymer consisting of monomer cellulose and this composition offers biodegradability and biocompatibility to CNW. Mechanical strength of CNW is superior to the existing natural polymers. In addition, substances of marine origin have a low risk of secondary infection by bacteria and pathogen in contrast with those of land-derived. For evaluating its suitability as an osteoblast scaffold, we fabricate CNW film for osteoblast culture and performed the MTT assay and ALP assay to confirm its cytotoxicity and effect on differentiation. Taking together these results, we assessed CNW is a potential candidate of a material for bone tissue regeneration.

Keywords: bone regeneration, cellulose nanowhisker, marine derived material, osteoblast

Procedia PDF Downloads 313
4754 The Effect of 8 Weeks Endurance Training and L-NAME on Apelin in Adipose Tissue, Glucose and Insulin in Elderly Male's Rats

Authors: Asieh Abbassi Daloii, Fatemeh Fani, Ahmad Abdi

Abstract:

Objective: The aim of this study was to determine the effect of 8 weeks endurance training and L-NAME on apelin in adipose tissue, glucose and insulin in elderly male’s rats. Methods: For this purpose, 24 vistar elderly rats with average 20 months old purchased from Razi Institute and transferred to Research Center were randomly divided into four groups: 1. control, 2. training, 3.training and L-NAME and 4. L-NAME. Training protocol performed for 8 weeks and 5 days a week with 75-80 VO2 max. All rats were killed 72 hours after the final training session and after 24 hours of fasting adipose tissue samples were collected and kept in -80. Also, Data was analyzed with One way ANOVA and Tucky in p < 0/05. Results: The results showed that the inhibition of nitric oxide on apelin in adipose tissue of adult male rats after eight weeks of endurance training increased significantly compared to the control group (p < 0.00). Also, the results showed no significant difference between the levels of insulin and glucose groups. Conclusion: It is likely that the increased apelin in adipose tissue in mice independent of insulin and glucose.

Keywords: endurance training, L-NAME, apelin in adipose tissue, elderly male rats

Procedia PDF Downloads 433
4753 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts

Procedia PDF Downloads 492
4752 Non-Invasive Imaging of Human Tissue Using NIR Light

Authors: Ashwani Kumar

Abstract:

Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function.

Keywords: NIR light, tissue, blurring, Monte Carlo simulation

Procedia PDF Downloads 464
4751 Low Cost Technique for Measuring Luminance in Biological Systems

Authors: N. Chetty, K. Singh

Abstract:

In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods.

Keywords: tissue phantoms, scattering coefficient, albedo, low-cost method

Procedia PDF Downloads 248
4750 The Influence of Alginate Microspheres Modified with DAT on the Proliferation and Adipogenic Differentiation of ASCs

Authors: Shin-Yi Mao, Jiashing Yu

Abstract:

Decellularized adipose tissue (DAT) has received lots of attention as biological scaffolds recently. DAT that extracted from the extracellular matrix (ECM) of adipose tissues holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. In our study, 2-D DATsol film was fabricated to enhance cell adhesion, proliferation, and differentiation of ASCs in vitro. DAT was also used to modify alginate for improvement of cell adhesion. Alginate microspheres modified with DAT were prepared by Nisco. These microspheres could provide a highly supportive 3-D environment for ASCs. In our works, ASCs were immobilized in alginate microspheres modified with DAT to promoted cell adhesion and adipogenic differentiation. Accordingly, we hypothesize that tissue regeneration in vivo could be promoted with the aid of modified microspheres in future.

Keywords: adipose stem cells, decellularize adipose tissue, Alginate, microcarries

Procedia PDF Downloads 416
4749 Pharmacognostical and Phytochemical Investigation of the Endemic Medicinal Plant Tekchebilium arvensis Linn

Authors: K. Bengango, H. Mesahsah, F. Haseb-Reho, J. M. Tafrate

Abstract:

This present work was conducted to explore the micro-morphology and phytochemical characterization of the endemic medicinal plant Tekchebilium arvensis Linn (Asteraceae). Macroscopy, microscopy, physicochemical analysis and WHO recommended parameters for standardizations were performed. Microscopic evaluation revealed the presence of abaxial epidermis with paracytic stomata. Petiole showed epidermis, vascular strands, ground tissue and secretary cavities. Physico-chemical tests like ash values, loss on drying, extractive values were determined. Preliminary phytochemical screening showed the presence of sterols, tannins, flavonoids, glycosides, volatile oil, terpenoids, saponin and alkaloids.

Keywords: Tekchebilium arvensis Linn, Asteraceae, microscopical evaluation, phytochemical, powder microscopy, standardization

Procedia PDF Downloads 410
4748 Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics

Authors: Momoh Omeiza Sheidu

Abstract:

Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study.

Keywords: finite element, biomechanics, modeling, computational biomechanics

Procedia PDF Downloads 468
4747 Levels of Toxic Metals in Different Tissues of Lethrinus miniatus Fish from Arabian Gulf

Authors: Muhammad Waqar Ashraf, Atiq A. Mian

Abstract:

In the present study, accumulation of eight heavy metals, lead (Pb), cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni) and chromium (Cr)was determined in kidney, heart, liver and muscle tissues of Lethrinus miniatus fish caught from Arabian Gulf. Metal concentrations in all the samples were measured using Atomic Absorption Spectroscopy. Analytical validation of data was carried out by applying the same digestion procedure to standard reference material (NIST-SRM 1577b bovine liver). Levels of lead (Pb) in the liver tissue (0.60µg/g) exceeded the limit set by European Commission (2005) at 0.30 µg/g. Zinc concentration in all tissue samples were below the maximum permissible limit (50 µg/g) as set by FAO. Maximum mean cadmium concentration was found 0.15 µg/g in the kidney tissues. Highest content of Mn in the studied tissues was seen in the kidney tissue (2.13 µg/g), whereas minimum was found in muscle tissue (0.87 µg/g). The present study led to the conclusion that muscle tissue is the least contaminated tissue in Lethrinus miniatus and consumption of organs should be avoided as much as possible.

Keywords: lethrinus miniatus, arabian gulf, heavy metals, atomic absorption spectroscopy

Procedia PDF Downloads 332
4746 Levels of Heavy Metals in Different Tissues of Lethrinus Miniatus Fish from Arabian Gulf

Authors: Muhammad Waqar Ashraf

Abstract:

In the present study, accumulation of eight heavy metals, lead (Pb), cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni) and chromium (Cr)was determined in kidney, heart, liver and muscle tissues of Lethrinus Miniatus fish caught from Arabian Gulf. Metal concentrations in all the samples were measured using Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS). Analytical validation of data was carried out by applying the same digestion procedure to standard reference material (NIST-SRM 1577b bovine liver). Levels of lead (Pb) in the liver tissue (0.60µg/g) exceeded the limit set by European Commission (2005) at 0.30 µg/g. Zinc concentration in all tissue samples were below the maximum permissible limit (50 µg/g) as set by FAO. Maximum mean cadmium concentration was found to be 0.15 µg/g in the kidney tissues. Highest content of Mn in the studied tissues was seen in the kidney tissue (2.13 µg/g), whereas minimum was found in muscle tissue (0.87 µg/g). The present study led to the conclusion that muscle tissue is the least contaminated tissue in Lethrinus Miniatus and consumption of organs should be avoided as much as possible.

Keywords: Arabian gulf, Lethrinus miniatus, heavy metals, atomic absorption spectroscopy

Procedia PDF Downloads 235
4745 Salicylic Acid Signalling in Relation to Root Colonization in Rice

Authors: Seema Garcha, Sheetal Chopra, Navraj Sarao

Abstract:

Plant hormones play a role in internal colonization by beneficial microbes and also systemic acquired resistance. They define qualitative and quantitative nature of root microbiome and also influence dynamics of root rhizospheric soil. The present study is an attempt to relate salicylic acid (signal molecule) content and qualitative nature of root endophytes at various stages in the growth of rice varieties of commercial value- Parmal 121 and Basmati 1121. Root seedlings of these varieties were raised using tissue culture techniques and then they were transplanted in the fields. Cultivation was done using conventional methods in agriculture. Field soil contained 0.39% N, 75.12 Kg/hectare of phosphorus and 163.0 Kg/hectare of potassium. Microfloral profiling of the root tissue was done using the selective microbiological medium. The salicylic acid content was estimated using HPLC-Agilent 1100 HPLC Series. Salicylic acid level of Basmati 1121 remained relatively low at the time of transplant and 90 days after transplant. It increased marginally at 60 days. A similar trend was observed with Parmal 121 as well. However, Parmal variety recorded 0.935 ug/g of salicylic acid at 60 days after transplant. Salicylic acid content decreased after 90 days as both the rice varieties remained disease free. The endophytic root microflora was established by 60 days after transplant in both the varieties after which their population became constant. Rhizobium spp dominated over Azotobacter spp. Genetic profiling of endophytes for nitrogen-fixing ability is underway.

Keywords: plant-microbe interaction, rice, root microbiome, salicylic acid

Procedia PDF Downloads 169
4744 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent

Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova

Abstract:

Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.

Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines

Procedia PDF Downloads 126
4743 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm² are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm²). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: focused ultrasound therapy, histotripsy, inertial cavitation, mechanical tissue ablation

Procedia PDF Downloads 291
4742 Effect of Interaction between Different Concentrations of Colchicine, Time Duration and Two Verities of Crepis capillaris on Chromosome Polyploidy in vitro Culture

Authors: Mosleh M. S. Duhoky, Payman A. A. Zibari

Abstract:

These experiments were conducted at Tissue Culture Laboratory/ Faculty of Agriculture and Forestry/ University of Duhok during the period from January 2011 to May 2013. The objectives of this study were to study the effects of interaction between three different factors on percentage of polyploidy of Crepis capillaris by using Tissue culture technology. Concerning the data it is obvious that shaking of Crepis capillaris with 2B chromosome with 0.15 mM for ten days inscribed a high percentage of polyploidy within most fifteen passages.

Keywords: crepis capillaris, 2B chromosome, tissue culture, polyploidy

Procedia PDF Downloads 319
4741 Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots

Authors: Angelos Kaminis, Dakotah Stirnweis

Abstract:

Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner.

Keywords: symbiotic, robotics, autonomous, plant-care, companion

Procedia PDF Downloads 113
4740 Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides

Authors: Mads H. Clausen

Abstract:

Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins.

Keywords: oligosaccharides, carbohydrate chemistry, plant cell walls, carbohydrate-acting enzymes

Procedia PDF Downloads 276
4739 New Strategy for Breeding of Artemisia annua L. for a Sustainable Production of the Antimalarial Drug Artemisinin

Authors: Nadali Babaeian Jelodar, Chan Lai Keng, Arvind Bhatt, Laleh Bordbar, Leow E Shuen, Kamaruzaman Mohamed

Abstract:

Recently artemisinin (the endoperoxide sesquiterpene lactone) has received considerable attention because of its antimalarial activity. It is isolated from the aerial part of the Artemisia annua L. Artemisinin is very difficult to synthesise also its production by mean of cell, tissue or organ cultures is very low. Presently, only its extraction from A. annua L. plants remains the only source of the drug. The reported yield of artemisinin from leaves of A. annua L. is very low and unstable, with yields typically less than 1% of leaf dry weight. To increase the percentage of artemisinin, researchers have been engaged in developing new varieties. A review concerning the breeding of A. annua L. is presented. The aim of this review is to bring together most of the available scientific research papers about the breeding conducted on the genus A. annua L., which is currently scattered across various publications. Through this review the authors hope to attract the attention of breeders throughout the world to focus on the unexplored potential of A. annua L. species. Also the future scope of this plant has been emphasized with a view of the importance of breeding of A. annua L. for increasing of artemisinin content. By releasing of new cultivar of A. annua L. and cultivation of this plant offers the opportunity to optimize yield and achieve a uniform, high quality product.

Keywords: Artemisia annua L., breeding, artemisinin, cultivation, medicinal plant

Procedia PDF Downloads 229