Search results for: pitch moment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1030

Search results for: pitch moment

790 Suitability of Direct Strength Method-Based Approach for Web Crippling Strength of Flange Fastened Cold-Formed Steel Channel Beams Subjected to Interior Two-Flange Loading: A Comprehensive Investigation

Authors: Hari Krishnan K. P., Anil Kumar M. V.

Abstract:

The Direct Strength Method (DSM) is used for the computation of the design strength of members whose behavior is governed by any form of buckling. DSM based semiempirical equations have been successfully used for cold-formed steel (CFS) members subjected to compression, bending, and shear. The DSM equations for the strength of a CFS member are based on the parameters accounting for strength [yield load (Py), yield moment (My), and shear yield load (Vy) for compression, bending, and shear respectively] and stability [buckling load (Pcr), buckling moment (Mcr), and shear buckling load (Vcr) for compression, bending and shear respectively]. The buckling of column and beam shall be governed by local, distortional, or global buckling modes and their interaction. Recently DSM-based methods are extended for the web crippling strength of CFS beams also. Numerous DSM-based expressions were reported in the literature, which is the function of loading case, cross-section shape, and boundary condition. Unlike members subjected to axial load, bending, or shear, no unified expression for the design web crippling strength irrespective of the loading case, cross-section shape, and end boundary conditions are available yet. This study, based on nonlinear finite element analysis results, shows that the slenderness of the web, which shall be represented either using web height to thickness ratio (h=t) or Pcr has negligible contribution to web crippling strength. Hence, the results in this paper question the suitability of DSM based approach for the web crippling strength of CFS beams.

Keywords: cold-formed steel, beams, DSM-based procedure, interior two flanged loading, web crippling

Procedia PDF Downloads 57
789 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai

Abstract:

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling

Procedia PDF Downloads 264
788 Contrastive Focus Marking in Brazilian Children under Typical and Atypical Phonological Development

Authors: Geovana Soncin, Larissa Berti

Abstract:

Some aspects of prosody acquisition remain still unclear, especially regarding atypical speech development processes. This work deals with prosody acquisition and its implications for clinical purposes. Therefore, we analyze speech samples produced by adult speakers, children in typical language development, and children with phonological disorders. Phonological disorder comprises deviating manifestations characterized by inconsistencies in the phonological representation of a linguistic system under acquisition. The clinical assessment is performed mostly based on contrasts whose manifestations occur in the segmental level of a phonological system. Prosodic organization of spoken utterances is not included in the standard assessment. However, assuming that prosody is part of the phonological system, it was hypothesized that children with Phonological Disorders could present inconsistencies that also occur at a prosodic level. Based on this hypothesis, the paper aims to analyze contrastive focus marking in the speech of children with Phonological Disorders in comparison with the speech of children under Typical Language Development and adults. The participants of all groups were native speakers of Brazilian Portuguese. The investigation was designed in such a way as to identify differences and similarities among the groups that could be interpreted as clues of normal or deviant processes of prosody acquisition. Contrastive focus in Brazilian Portuguese is marked by increasing duration, f0, and intensity on the focused element as well as by a particular type of pitch accent (L*+H). Thirty-nine subjects participated, thirteen from each group. Acoustic analysis was performed, considering duration, intensity, and intonation as parameters. Children with PD were recruited in sessions from a service provided by Speech-Language Pathology Therapy; children in TD, paired in age and sex with the first group, were recruited in a regular school; and 20-24 years old adults were recruited from a University class. In a game prepared to elicit focused sentences, all of them produced the sentence “Girls love red dress,” marking focus on different syntactic positions: subject, verb, and object. Results showed that adults, children in typical language development, and children with Phonological Disorders marked contrastive focus differently: typical children used all parameters like adults do; however, in comparison with them, they exaggerated duration and, in the opposite direction, they did not increase f0 in a sufficient magnitude as adults; children with Phonological Disorder presented inconsistencies in duration, not increasing it in some syntactic positions, and also in intonation, not producing the representative pitch accent of contrastive focus. The results suggest prosody is also affected by phonological disorder and give clues of developmental processes of prosody acquisition.

Keywords: Brazilian Portuguese, contrastive focus, phonological disorder, prosody acquisition

Procedia PDF Downloads 47
787 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger

Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez

Abstract:

One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.

Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation

Procedia PDF Downloads 117
786 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments

Authors: Lana Burmistrova

Abstract:

Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.

Keywords: attention, blindness, memory, music learning, strategy

Procedia PDF Downloads 156
785 A New Criterion for Removal of Fouling Deposit

Authors: D. Bäcker, H. Chaves

Abstract:

The key to improve surface cleaning of the fouling is understanding of the mechanism of separation process of the deposit from the surface. The authors give basic principles of characterization of separation process and introduce a corresponding criterion. The developed criterion is a measure for the moment of separation of the deposit from the surface. For this purpose a new measurement technique is described.

Keywords: cleaning, fouling, separation, criterion

Procedia PDF Downloads 429
784 Use of Smartwatches for the Emotional Self-Regulation of Individuals with Autism Spectrum Disorder (ASD)

Authors: Juan C. Torrado, Javier Gomez, Guadalupe Montero, German Montoro, M. Dolores Villalba

Abstract:

One of the most challenging aspects of the executive dysfunction of people with Autism Spectrum Disorders is the behavior control. This is related to a deficit in their ability to regulate, recognize and manage their own emotions. Some researchers have developed applications for tablets and smartphones to practice strategies of relaxation and emotion recognition. However, they cannot be applied to the very moment of temper outbursts, anger episodes or anxiety, since they require to carry the device, start the application and be helped by caretakers. Also, some of these systems are developed for either obsolete technologies (old versions of tablet devices, PDAs, outdated operative systems of smartphones) or specific devices (self-developed or proprietary ones) that create differentiation between the users and the rest of the individuals in their context. For this project we selected smartwatches. Focusing on emergent technologies ensures a wide lifespan of the developed products, because the derived products are intended to be available in the same moment the very technology gets popularized, not later. We also focused our research in commercial versions of smartwatches, since this way differentiation is easily avoided, so the users’ abandonment rate lowers. We have developed a smartwatch system along with a smartphone authoring tool to display self-regulation strategies. These micro-prompting strategies are conformed of pictograms, animations and temporizers, and they are designed by means of the authoring tool: When both devices synchronize their data, the smartwatch holds the self-regulation strategies, which are triggered when the smartwatch sensors detect a remarkable rise of heart rate and movement. The system is being currently tested in an educational center of people with ASD of Madrid, Spain.

Keywords: assistive technologies, emotion regulation, human-computer interaction, smartwatches

Procedia PDF Downloads 269
783 Neural Synchronization - The Brain’s Transfer of Sensory Data

Authors: David Edgar

Abstract:

To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.

Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)

Procedia PDF Downloads 102
782 Quantification of Factors Contributing to Wave-In-Deck on Fixed Jacket Platforms

Authors: C. Y. Ng, A. M. Johan, A. E. Kajuputra

Abstract:

Wave-in-deck phenomenon for fixed jacket platforms at shallow water condition has been reported as a notable risk to the workability and reliability of the platform. Reduction in reservoir pressure, due to the extraction of hydrocarbon for an extended period of time, has caused the occurrence of seabed subsidence. Platform experiencing subsidence promotes reduction of air gaps, which eventually allows the waves to attack the bottom decks. The impact of the wave-in-deck generates additional loads to the structure and therefore increases the values of the moment arms. Higher moment arms trigger instability in terms of overturning, eventually decreases the reserve strength ratio (RSR) values of the structure. The mechanics of wave-in-decks, however, is still not well understood and have not been fully incorporated into the design codes and standards. Hence, it is necessary to revisit the current design codes and standards for platform design optimization. The aim of this study is to evaluate the effects of RSR due to wave-in-deck on four-legged jacket platforms in Malaysia. Base shear values with regards to calibration and modifications of wave characteristics were obtained using SESAM GeniE. Correspondingly, pushover analysis is conducted using USFOS to retrieve the RSR. The effects of the contributing factors i.e. the wave height, wave period and water depth with regards to the RSR and base shear values were analyzed and discussed. This research proposal is important in optimizing the design life of the existing and aging offshore structures. Outcomes of this research are expected to provide a proper evaluation of the wave-in-deck mechanics and in return contribute to the current mitigation strategies in managing the issue.

Keywords: wave-in-deck loads, wave effects, water depth, fixed jacket platforms

Procedia PDF Downloads 405
781 Performance Assessment of GSO Satellites before and after Enhancing the Pointing Effect

Authors: Amr Emam, Joseph Victor, Mohamed Abd Elghany

Abstract:

The paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined both theoretically and by means of practical measurements, taking also into account all additional sources of pointing errors, such as East-West station keeping, orbit eccentricity and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a tracking 11m and fixed 4.8m transmitting antenna before and after the implementation of the pointing corrections.

Keywords: satellite, inclined orbit, pointing errors, coverage optimization

Procedia PDF Downloads 364
780 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results.

Keywords: cold-formed steel, finite element analysis, opening, reinforcement, shear resistance

Procedia PDF Downloads 255
779 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking

Authors: Mansour Eslami, Fereshte Habibi

Abstract:

Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.

Keywords: kinematic, leg length discrepancy, shoe insole, walking

Procedia PDF Downloads 93
778 Fabrication of InGaAs P-I-N Micro-Photodiode Sensor Array

Authors: Jyun-Hao Liao, Chien-Ju Chen, Chia-Jui Yu, Meng Chyi Wu, Chia-Ching Wu

Abstract:

In this letter, we reported the fabrication of InGaAs micro-photodiode sensor array with the rapid thermal diffusion (RTD) technique. The spin-on dopant source Zn was used to form the p-type region in InP layer. Through the RTD technique, the InP/InGaAs heterostructure was formed. We improved our fabrication on the p-i-n photodiode to micro size which pixel is 7.8um, and the pitch is 12.8um. The proper SiNx was deposited to form the passivation layer. The leakage current of single pixel decrease to 3.3pA at -5V, and 35fA at -10mV. The leakage current densities of each voltage are 21uA/cm² at -5V and 0.223uA/cm² at -10mV. As we focus on the wavelength from 0.9um to 1.7um, the optimized Si/Al₂O₃ bilayers are deposited to form the AR-coating.

Keywords: InGaAs, micro sensor array, p-i-n photodiode, rapid thermal diffusion, Zn diffusion

Procedia PDF Downloads 287
777 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs

Authors: Varun Goel

Abstract:

Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4-16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.

Keywords: artificial roughness, solar air heater, triangular duct, V-shaped ribs

Procedia PDF Downloads 424
776 Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method

Authors: N. R. Mohamad, H. Ono, H. Haroon, A. Salleh, N. M. Z. Hashim

Abstract:

In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters.

Keywords: birefringence, diffraction efficiency, finite domain time difference, nematic liquid crystals

Procedia PDF Downloads 436
775 The Impact of Electronic Marketing on the Quality Banking Services

Authors: Ahmed Ghalem

Abstract:

The research to be explained is a collection of information about several public and private economic institutions. This information is represented in highlighting the large and useful role in adopting the method of electronic marketing. Which is widespread and easy to use among community members at the local and international levels. Which generates large sums of money with little effort and little time, and also satisfies the customers. Do these things, despite what we have said, run the risk of losing large amounts of money in a moment or a short time.

Keywords: economic, finance, bank, development, marketing

Procedia PDF Downloads 56
774 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics

Authors: M. Jathaveda, Joben Leons, G. Vidya

Abstract:

Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.

Keywords: stability, typical reentry body, subsonic, static and dynamic

Procedia PDF Downloads 78
773 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control

Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen

Abstract:

In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.

Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics

Procedia PDF Downloads 541
772 Mechanical Study Printed Circuit Boards Bonding for Jefferson Laboratory Detector

Authors: F. Noto, F. De Persio, V. Bellini, G. Costa. F. Mammoliti, F. Meddi, C. Sutera, G. M. Urcioli

Abstract:

One plane X and one plane Y of silicon microstrip detectors will constitute the front part of the Super Bigbite Spectrometer that is under construction and that will be installed in the experimental Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory), located in Newport News, Virgina, USA. Each plane will be made up by two nearly identical, 300 μm thick, 10 cm x 10.3 cm wide silicon microstrip detectors with 50 um pitch, whose electronic signals will be transferred to the front-end electronic based on APV25 chips through C-shaped FR4 Printed Circuit Boards (PCB). A total of about 10000 strips are read-out. This paper treats the optimization of the detector support structure, the materials used through a finite element simulation. A very important aspect of the study will also cover the optimization of the bonding parameters between detector and electronics.

Keywords: FEM analysis, bonding, SBS tracker, mechanical structure

Procedia PDF Downloads 311
771 A Reusable Foundation Solution for Onshore Windmills

Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom

Abstract:

Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.

Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils

Procedia PDF Downloads 192
770 Investigation of the Corroded Steel Beam

Authors: Hesamaddin Khoshnoodi, Ahmad Rahbar Ranji

Abstract:

Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase.

Keywords: Abaqus, Corrosion, deformation, Steel Beam

Procedia PDF Downloads 320
769 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 58
768 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 527
767 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 474
766 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 143
765 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 501
764 A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System

Authors: Tijing Cai, Qimeng Xu, Daijin Zhou

Abstract:

This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°.

Keywords: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit), BDS (BeiDou Navigation Satellite System), dual-antenna, integrated navigation

Procedia PDF Downloads 165
763 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 432
762 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance

Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan

Abstract:

When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.

Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel

Procedia PDF Downloads 36
761 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 357