Search results for: phytochemicals and stem bark
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 956

Search results for: phytochemicals and stem bark

686 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 72
685 Assessment of in vitro Antioxidant and Anti-Inflammatory Potentials of Methanol Extract of Chrysophyllum albidum Cotyledon

Authors: Christianah Adebimpe Dare, Nelson Oghenebrorhie Elvis

Abstract:

This study was aimed at analysing the phytochemicals in Chrysophyllum albidum cotyledon extract and their in vitro antioxidant and anti-inflammatory effects. The star apple fruit was bought at Igbona market Osogbo, Osun State, Nigeria. The seed from the fruit was removed and defatted. The residue was exhaustively extracted with methanol. The Chrysophyllum albidum cotyledon methanol extract (CCME) was phytochemically screened, flavonoids and phenol contents, antioxidant and anti-inflammatory assays were carried out on the extract using standard procedures. Phytochemicals analysis revealed the presence of steroids, tannins, flavonoid, saponin, triterpenes, and xanthoproteins. The phenolic concentration, total flavonoids concentration, and total sugar concentration were found to be 26.72 ± 0.048 µgTAE/mg, 23.12 ± 1.92µg of Rutin equivalent (RTE)/mg (10.49 ± 1.12µg of Quercetin equivalent (QE/mg) and 778.38 ± 12.82 µg of glucose/ml, respectively. The extract demonstrated significant inhibitory effect compared with the standards as potent antioxidant with percentage inhibition of DPPH as 38.10 %-39.51 %, lipid peroxidation as 45.85 %-65.85 %; ferric reducing power showed linear correlation to the standard and the anti-inflammatory potential with 22.06 %-26.37 % protection of the human red blood membrane and the percentage inhibition of denaturation of albumin 3.42 %-7.32 %. The study showed that C. albidum cotyledon methanol extract is a potent antioxidant and anti-inflammatory agent to combat oxidative stress and pathological diseases caused by reactive species.

Keywords: albumin denaturation, free radicals, lipid peroxidation, reactive species

Procedia PDF Downloads 99
684 Chromatographic Fingerprint Analysis of Methanolic Extract of Camellia sinensis Linn. Leaves

Authors: Babar Ali, Mohammad Rashid, Showkat Rasool Mir, Mohammad Ali, Saiba Shams

Abstract:

Background: The plant Camellia sinensis (Theaceae) is an evergreen shrub indigenous to Assam (India) and parts of China and Japan. Traditional Chinese medicine has recommended green tea for headaches, body aches and pains, digestion, enhancement of immune defense, detoxification, as an energizer and to prolong life. The leaves have more than 700 chemical constituents, among which flavanoids, amino acids, vitamins (C, E, K), caffeine and polysaccharides. Adulteration and substitution may affect the quality of formulation containing tea leaves. Standardization of medicinal preparation is essential for further therapeutic results and for global acceptance. Hence, chromatographic fingerprint profiles were carried out for establishing the standards. Materials and methods: TLC studies for methanolic extracts of the leaves of Camellia sinensis were carried out in a new developed solvent system, Toluene: Ethyl acetate: Formic acid (7:3:1). TLC plates were dried in air, visualized in UV at wavelengths 254 nm and 366 nm and photographed. Results: Results provide valuable clue regarding their polarity and selection of solvents for separation of phytochemicals. Fingerprinting of methanolic extract of Camellia sinensis leaves revealed the presence of various phytochemicals in UV at 254 nm and 366 nm. Conclusion: Fingerprint profile is quite helpful in setting up of standards and thus to keep a check on intentional/unintentional adulteration. TLC offers major advantages over other conventional chromatographic techniques such as unsurpassed flexibility (esp. stationary and mobile phase), choice of detection wavelength, user friendly, rapid and cost effective.

Keywords: Cammelia sinensis Linn., standardization, methanolic extract, thin layer chromatography

Procedia PDF Downloads 389
683 Possible Modulation of FAS and PTP-1B Signaling in Ameliorative Potential of Bombax ceiba against High Fat Diet Induced Obesity

Authors: Paras Gupta, Rohit Goyal, Yamini Chauhan, Pyare Lal Sharma

Abstract:

Background: Bombax ceiba Linn., commonly called as Semal, is used in various gastro-intestinal disturbances. It contains lupeol which inhibits PTP-1B, adipogenesis, TG synthesis and accumulation of lipids in adipocytes and adipokines whereas the flavonoids isolated from B. ceiba has FAS inhibitory activity. The present study was aimed to investigate ameliorative potential of Bombax ceiba to experimental obesity in Wistar rats, and its possible mechanism of action. Methods: Male Wistar albino rats weighing 180–220 g were employed in present study. Experimental obesity was induced by feeding high fat diet for 10 weeks. Methanolic extract of B. ceiba extract 100, 200 and 400 mg/kg and Gemfibrozil 50 mg/kg as standard drug were given orally from 7th to 10th week. Results: Induction with HFD for 10 weeks caused significant (p < 0.05) increase in % body wt, BMI, LEE indices; serum glucose, triglyceride, LDL, VLDL, cholesterol, free fatty acid, ALT, AST; tissue TBARS, nitrate/nitrite levels; different fat pads and relative liver weight; and significant decrease in food intake (g and kcal), serum HDL and tissue glutathione levels in HFD control rats. Treatment with B. ceiba extract and Gemfibrozil significantly attenuated these HFD induced changes, as compared to HFD control. The effect of B. ceiba 200 and 400 mg/kg was more pronounced in comparison to Gemfibrozil. Conclusion: On the basis of results obtained, it may be concluded that the methanolic extract of stem bark of Bombax ceiba has significant ameliorative potential against HFD induced obesity in rats, possibly through modulation of FAS and PTP-1B signaling due to the presence of flavonoids and lupeol.

Keywords: obesity, Bombax ceiba, free fatty acid, protein tyrosine phosphatase-1B, fatty acid synthase

Procedia PDF Downloads 368
682 Students’ Perception of Effort and Emotional Costs in Chemistry Courses

Authors: Guizella Rocabado, Cassidy Wilkes

Abstract:

It is well known that chemistry is one of the most feared courses in college. Although many students enjoy learning about science, most of them perceive that chemistry is “too difficult”. These perceptions of chemistry result in many students not considering Science, Technology, Engineering, and Mathematics (STEM) majors because they require chemistry courses. Ultimately, these perceptions are also thought to be related to high attrition rates of students who begin STEM majors but do not persist. Students perceived costs of a chemistry class can be many, such as task effort, loss of valued alternatives, emotional, and others. These costs might be overcome by students’ interests and goals, yet the level of perceived costs might have a lasting impact on the students’ overall perception of chemistry and their desire to pursue chemistry and other STEM careers in the future. In this mixed methods study, we investigated task effort and emotional cost, as well as a mastery or performance goal orientation, and the impact these constructs may have on achievement in general chemistry classrooms. Utilizing cluster analysis as well as student interviews, we investigated students’ profiles of perceived cost and goal orientation as it relates to their final grades. Our results show that students who are well prepared for general chemistry, such as those who have taken chemistry in high school, display less negative perceived costs and thus believe they can master the material more fully. Other interesting results have also emerged from this research, which has the potential to have an impact on future instruction of these courses.

Keywords: chemistry education, motivation, affect, perceived costs, goal orientations

Procedia PDF Downloads 56
681 A Green Analytical Curriculum for Renewable STEM Education

Authors: Mian Jiang, Zhenyi Wu

Abstract:

We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.

Keywords: green analytical chemistry, pencil lead, mercury, renewable

Procedia PDF Downloads 296
680 Clinical Application of Mesenchymal Stem Cells for Cancer Therapy: A Review of Registered Clinical Trials

Authors: Tuong Thi Van Thuy, Dao Van Toan, Nguyen Duc Phuc

Abstract:

Mesenchymal stem cells (MSCs) were discovered in the 1970s with their unique properties of differentiation, immunomodulation, multiple secreting, and homing factors to injured organs. MSC-based therapies have emerged as a promising strategy for various diseases such as cancer, tissue regeneration, or immunologic/inflammatory-related diseases. This study evaluated the clinical application of MSCs for cancer therapy in trials registered on Clinical Trial as of July 2022. The results showed 40 clinical trials used MSCs in various cancer conditions. 62% of trials used MSCs for therapeutic purposes to minimize the side effects of cancer treatment. Besides, 38% of trials were focused on using MSCs as a therapeutic agent to treat cancer directly. Most trials (38/40) are ongoing phase I/II, and 2 are entering phase III. 84% of trials used allogeneic MSCs compared with 13% using autologous sources and 3% using both. 25/40 trials showed participants received a single dose of MSCs, while the most times were 12 times in a pancreatic cancer treatment trial. Conclusion: MSC-based therapy for cancer in clinical trials should be applied to (1) minimize the side effects of oncological treatments and (2) directly affect the tumor via selectively delivering anti-cancer payloads to tumor cells. Allogeneic MSCs are a priority selected in clinical cancer therapy.

Keywords: mesenchymal stem cells, MSC-based therapy, cancer condition, cancer treatment, clinical trials

Procedia PDF Downloads 56
679 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali

Abstract:

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Keywords: biochar, biomass, cassava wastes, corn cob, pyrolysis

Procedia PDF Downloads 270
678 Characterization of a Mesenchymal Stem Cells Pool in Killian Nasal Polyp

Authors: Emanuela Chiarella, Clelia Nisticò, Nicola Lombardo, Giovanna Lucia Piazzetta, Nadia Lobello, Maria Mesuraca

Abstract:

Killian’s Antrochoanal Polyp is a benign lesion of the maxillary sinus characterized by unilateral nasal obstruction, pus discharge, and headache. It affects, more commonly children and young adults. Although its etiology still remains unclear, chronic inflammation, autoreactivity, allergies, and viral infections are strongly associated with its formation and development, resulting in nasal tissue remodeling. We aimed to investigate the stem cells components which reside in this pathological tissue. In particular, we adopted a protocol for the isolation and culturing of mesenchymal stem cells from surgical biopsies of three Killian nasal polyp patients (KNP-MSCs) as well as from their healthy nasal tissue (HNT-MSCs) that were used as controls. The immunophenotype profile of HNT-MSCs and KNP-MSCs was more similar, with a marked positivity for CD73, CD90, and CD105 expression, while being negative for CD34 and CD14 haematopoietic genes. Cell proliferation assay showed that KNP-MSCs had a replicative disadvantage compared to HNT-MSCs, as evidenced by the significantly lower number of cells in the S-phase of the cell cycle. KNP-MSCs also took longer to close a wound than HNT-MSCs, indicating a partial epithelial phenotype in which low levels of ICAM-1 mRNA and a significant increase in E-CAD transcript were detectable. Subsequently, the differentiation potential of both MSCs populations was analyzed by inducing osteoblastic or adipocyte differentiation for up to 20 days. KNP-MSCs showed the ability to differentiate into osteoblasts, although ALP activity as well as the number and size of calcium deposits were lower than osteogenic induced-HNT-MSCs. Also, mRNA levels of osteoblastic marker genes (OCN, OPN, OSX, RUNX2) resulted lower compared to control cell population. Instead, the analysis of the adipogenic differentiation potential showed a similar behavior between KNP-MSCs and HNT-MSCs considering that the amount of lipid droplets, the expression of adipocyte-specific genes (FABP4, AdipoQ, PPARγ2, LPL) and the content of triacylglycerols were almost overlapping. Taken together, these results first demonstrated that Killian's nasal polyp is a source of mesenchymal stem cells with self-renewal and multi-differentiative capabilities.

Keywords: Mesenchymal stem cells, adipogenic differentiation, osteogenic differentiation, EMT

Procedia PDF Downloads 48
677 The Morphological Changes of POV in Diabetic Patients and Its Correlation with Changes in Corneal Epithelium, Corneal Nerve, and the Fundus in Using Vivo Confocal Microscopy

Authors: Ji Jiazheng, Wang Jingrao, Jin Xin, Zhang Hong

Abstract:

Diabetes mellitus is a metabolic disease characterized by high blood sugar. A long-standing hyperglycemic state can lead to various tissue damage. Diabetic retinopathy is the most common and widely studied ocular complication and has become the leading cause of blindness in my country. At the same time, diabetes has profound clinically relevant effects on the cornea, leading to keratopathy and vision-threatening. The cornea is an avascular tissue and is sensitive to hyperglycemia, Keratopathy caused by diabetes is usually chronic, they are called diabetic keratopathy or diabetic neurotrophic keratopathy, leading to several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity. Corneal stem cell dysfunction in diabetic patients as an important influencing factor of diabetic keratopathy. The consequences of this condition are often underestimated. The limbus is located between the cornea and the sclera tissue. The limbal stroma consists of a series of radial elevations with fibrovascular centers known as palisades of Vogt (POV). Previous studies have shown that palisades of Vogt (POV), as the main site of limbal stem cells, plays an important role in the homeostasis of the corneal epithelium. Therefore, POV plays a vital role in the healing of corneal epithelial surgery and postoperative evaluation. IVCM can observe the condition of the corneal epithelium at the cellular level. It has profound significance and guidance for the evaluation of limbal and limbal stem cells. We have previously observed structural changes in POV in HSK and HZO patients on IVCM. At present, there have been reports involving limbal stem cell dysfunction in diabetic patients, but the specific pathogenesis is still unclear. However, there are no studies on POV morphological changes in patients with DM. Therefore, we performed statistics and compared the correlation between POV morphological changes and corneal epithelial basal cell density, corneal nerves, and length of disease in DM patients and normal humans using IVCM studies. At the same time, fundoscopy was used to observe the correlation between the thickness of RNFL and the thickness of GCC and POV in diabetic patients. And to observe the correlation between SVD, DVD and POV for research.

Keywords: confocal microscopy, fundus, limbal stem cells, diabetes

Procedia PDF Downloads 40
676 Yield Loss in Maize Due to Stem Borers and Their Integrated Management

Authors: C. P. Mallapur, U. K. Hulihalli, D. N. Kambrekar

Abstract:

Maize (Zea mays L.) an important cereal crop in the world has diversified uses including human consumption, animal feed, and industrial uses. A major constraint in low productivity of maize in India is undoubtedly insect pests particularly two species of stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker). The stem borers cause varying level of yield losses in different agro-climate regions (25.7 to 80.4%) resulting in a huge economic loss to the farmers. Although these pests are rather difficult to manage, efforts have been made to combat the menace by using effective insecticides. However, efforts have been made in the present study to integrate various possible approaches for sustainable management of these borers. Two field experiments were conducted separately during 2016-17 at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, India. In the first experiment, six treatments were randomized in RBD. The insect eggs at pinhead stage (@ 40 eggs/plant) were stapled to the under surface of leaves covering 15-20 % of plants in each plot after 15 days of sowing. The second experiment was planned with nine treatments replicated thrice. The border crop with NB -21 grass was planted all around the plots in the specific treatments while, cowpea intercrop (@6:1-row proportion) was sown along with the main crop and later, the insecticidal spray with chlorantraniliprole and nimbecidine was taken upon need basis in the specific treatments. The results indicated that the leaf injury and dead heart incidence were relatively more in the treatments T₂ and T₄ wherein, no insect control measures were made after the insect release (58.30 & 40.0 % leaf injury and 33.42 and 25.74% dead heart). On the contrary, these treatments recorded higher stem tunneling (32.4 and 24.8%) and resulted in lower grain yield (17.49 and 26.79 q/ha) compared to 29.04, 32.68, 40.93 and 46.38 q/ha recorded in T₁, T₃, T₅ and T₆ treatments, respectively. A maximum yield loss of 28.89 percent was noticed in T₂ followed by 19.59 percent in T₄ where no sprays were imposed. The data on integrated management trial revealed the lowest stem borer damage (19.28% leaf injury and 1.21% dead heart) in T₅ (seed treatment with thiamethoxam 70FS @ 8ml/kg seed + cow intercrop along with nimbecidine 0.03EC @ 5.0 ml/l and chlorantraniliprole 18.5SC spray @ 0.2 ml/l). The next best treatment was T₆ (ST+ NB-21 borer with nimbecidine and chlorantraniliprole spray) with 21.3 and 1.99 percent leaf injury and dead heart incidence, respectively. These treatments resulted in highest grain yield (77.71 and 75.53 q/ha in T₅ and T₆, respectively) compared to the standard check, T₁ (ST+ chlorantraniliprole spray) wherein, 27.63 percent leaf injury and 3.68 percent dead heart were noticed with 60.14 q/ha grain yield. The stem borers can cause yield loss up to 25-30 percent in maize which can be well tackled by seed treatment with thiamethoxam 70FS @ 8ml/kg seed and sowing the crop along with cowpea as intercrop (6:1 row proportion) or NB-21 grass as border crop followed by application of nimbecidine 0.03EC @ 5.0 ml/l and chlorantraniliprole 18.5SC @ 0.2 ml/l on need basis.

Keywords: Maize stem borers, Chilo partellus, Sesamia inferens, crop loss, integrated management

Procedia PDF Downloads 146
675 In vitro Control of Mycosphaerella arachidis Deighton the Early Leaf Spot Disease Pathogen of Groundnut by the Extracts from Six Medicinal Plants

Authors: Matthew Omoniyi Adebola, Jude E Amadi

Abstract:

Ground nut (Arachis hypogaea) is one of the most popular commercial crops in Nigeria. Its suc-cessful production has been drastically affected by early leaf spot disease caused by Mycosphae-rella arachidis Deighton. In vitro control of the pathogen by six medicinal plants (Entada afri-cana, Vitex doniana, Lawsonia inermis, Azadirachta indica, Acalypha hispida and Nuaclea lati-folia) was assessed in this study. The extracts of the plants were prepared using cold and hot wa-ter and alcohol. The pathogen was isolated from ground nut infected with early leaf spot disease. The results revealed a great significant difference (P<0.05) in yield of extracts between cold water, hot water, and alcohol extracts. A significant difference (P<0.05) was observed in percentage concentrations of the various phytochemical constituents present in the extracts. Flavonoids per-centage concentration was the highest (0.68 - 1.95%) followed by saponnin(0.09-1.53%) in N. latifolia extracts. Steroiods had the least percentage concentrations (0.00- 0.09%)followed by terpenoids(0.02–0.71%) and proanthocyannin (0.05 – 0.86%). N. latifolia extracts produced the highest percentage concentrations (0.07–1.95%) of all the phytochemicals followed by A. indi-ca(0.05–1.64%)and least concentrations were obtained in A. hispidia(0.09 – 0.87%)and V. do-niana (0.00–0.88%). The extracts inhibited spore germination and growth of M. arachidis. The inhibition by alcohol extracts was high and significantly different (P>0.05) from cold and hot water extracts. Alcohol extract of L. inermis gave 100% spore germination inhibition followed by N. latifolia and A.indica with 97.75% and 85.60% inhibition respectively. Therefore, field trials of these six medicinal plants on the control of early leaf spot disease of ground nut are rec-ommended.

Keywords: groundnut, phytochemicals, medicinal plants, extracts, inhibition

Procedia PDF Downloads 261
674 Genetic Analysis of Rust Resistance Genes in Global Wheat

Authors: Aktar-Uz-Zaman, M. Tuhina-Khatun, Mohamed Hanafi Musa

Abstract:

Three rust diseases: leaf (brown) rust caused by Puccinia triticina Eriks, stripe (yellow) rust caused by Puccinia striiformis West, and stem (black) rust caused by Puccinia graminis f. sp. tritici are economically important diseases of wheat in world wide. Yield loss due to leaf rust is 40% in susceptible cultivars. Yield losses caused by the stem rust pathogens in the mid of 20 century reached 20-30% in Eastern and Central Europe and the most virulent stem rust race Ug99 emerged first in Uganda and after that in Kenya, Ethiopia, Yemen, in the Middle East and South Asia. Yield losses were estimated up to 100%, whereas, up to 80% have been reported in Kenya during 1999. In case of stripe rust, severity level has been recorded 60% - 70% as compared to 100% severity of susceptible check in disease screening nurseries in Kenya. Improvement of resistant varieties or cultivars is the sustainable, economical and environmentally friendly approaches for increasing the global wheat production to suppress the rust diseases. More than 68 leaf rust, 49 stripe rust and 53 stem rust resistance genes have been identified in the global wheat cultivars or varieties using different molecular breeding approaches. Among these, Lr1, Lr9, Lr10, Lr19, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr47, Lr51, Lr3bg, Lr18, Lr40, Lr46, and Lr50 leaf rust resistance genes have been identified by using molecular, enzymatic and microsatellite markers from African, Asian, European cultivars of hexaploid wheat (Triticum aestivum), durum wheat and diploid wheat species. These genes are located on 20, of the 21 chromosomes of hexaploid wheat. Similarly, Sr1, Sr2, Sr24, and Sr3, Sr31 stem rust resistance genes have been recognized from wheat cultivars of Pakistan, India, Kenya, and Uganda etc. A race of P. striiformis (stripe rust) Yr9, Yr18, and Yr29 was first observed in East Africa, Italy, Pakistan and India wheat cultivars. These stripe rust resistance genes are located on chromosomes 1BL, 4BL, 6AL, 3BS and 6BL in bread wheat cultivars. All these identified resistant genes could be used for notable improvement of susceptible wheat cultivars in the future.

Keywords: hexaploid wheat, resistance genes, rust disease, triticum aestivum

Procedia PDF Downloads 455
673 A Double-Blind, Randomized, Controlled Trial on N-Acetylcysteine for the Prevention of Acute Kidney Injury in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

Authors: Sara Ataei, Molouk Hadjibabaie, Amirhossein Moslehi, Maryam Taghizadeh-Ghehi, Asieh Ashouri, Elham Amini, Kheirollah Gholami, Alireza Hayatshahi, Mohammad Vaezi, Ardeshir Ghavamzadeh

Abstract:

Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-Endstage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9, and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan–Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analyzed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients.

Keywords: acute kidney injury, N-acetylcysteine, hematopoietic stem cell transplantation, urine neutrophil gelatinase-associated lipocalin, randomized controlled trial

Procedia PDF Downloads 406
672 The Improved Therapeutic Effect of Trans-Cinnamaldehyde on Adipose-Derived Stem Cells without Chemical Induction

Authors: Karthyayani Rajamani, Yi-Chun Lin, Tung-Chou Wen, Jeanne Hsieh, Yi-Maun Subeq, Jen-Wei Liu, Po-Cheng Lin, Horng-Jyh Harn, Shinn-Zong Lin, Tzyy-Wen Chiou

Abstract:

Assuring cell quality is an essential parameter for the success of stem cell therapy, utilization of various components to improve this potential has been the primary goal of stem cell research. The aim of this study was not only to demonstrate the capacity of trans-cinnamaldehyde (TC) to reverse stress-induced senescence but also improve the therapeutic abilities of stem cells. Because of the availability and the promising application potential in regenerative medicine, adipose-derived stem cells (ADSCs) were chosen for the study. We found that H2O2 treatment resulted in the expression of senescence characteristics in the ADSCs, including decreased proliferation rate, increased senescence-associated- β-galactosidase (SA-β-gal) activity, decreased SIRT1 (silent mating type information regulation 2 homologs) expression and decreased telomerase activity. However, TC treatment was sufficient to rescue or reduce the effects of H2O2 induction, ultimately leading to an increased proliferation rate, a decrease in the percentage of SA-β-gal positive cells, upregulation of SIRT1 expression, and increased telomerase activity of the senescent ADSCs at the cellular level. Further recently it was observed that the ADSCs were treated with TC without induction of senescence, all the before said positives were observed. Moreover, a chemically induced liver fibrosis animal model was used to evaluate the functionality of these rescued cells in vivo. Liver dysfunction was established by injecting 200 mg/kg thioacetamide (TAA) intraperitoneally into Wistar rats every third day for 60 days. The experimental rats were separated into groups; normal group (rats without TAA induction), sham group (without ADSC transplantation), positive control group (transplanted with normal ADSCs); H2O2 group (transplanted with H2O2 -induced senescent ADSCs), H2O2+TC group (transplanted with ADSCs pretreated with H2O2 and then further treated with TC) and TC group (ADSC treated with TC without H2O2 treatment). In the transplantation group, 1 × 106 human ADSCs were introduced into each rat via direct liver injection. Based on the biochemical analysis and immunohistochemical staining results, it was determined that the therapeutic effects on liver fibrosis by the induced senescent ADSCs (H2O2 group) were not as significant as those exerted by the normal ADSCs (the positive control group). However, the H2O2+TC group showed significant reversal of liver damage when compared to the H2O2 group 1 week post-transplantation. Further ADSCs without H2O2 treatment but with just TC treatment performed much better than all the groups. These data confirmed that the TC treatment had the potential to improve the therapeutic effect of ADSCs. It is therefore suggested that TC has potential applications in maintaining stem cell quality and could possibly aid in the treatment of senescence-related disorders.

Keywords: senescence, SIRT1, adipose derived stem cells, liver fibrosis

Procedia PDF Downloads 226
671 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 265
670 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber

Procedia PDF Downloads 201
669 Leadership Development of Professional Ethiopian Women in Science, Technology, Engineering, and Mathematics: Insights Gained through an Onsite Culturally Embedded Workshop

Authors: Araceli Martinez Ortiz, Gillian Bayne, Solomon Abraham

Abstract:

This paper describes research led by faculty from three American universities and four Ethiopian universities on the delivery of professional leadership development for early-career female Ethiopian university instructors in the Science, Technology, Engineering, and Mathematics (STEM) fields. The objective was to carry out a case study focused on the impact of an innovative intervention program designed to assist in the empowerment and leadership development related to teaching effectiveness, scholarly activity participation, and professional service participation by female instructors. This research was conducted utilizing a case study methodology for the weeklong intervention and a survey to capture the voices of the leadership program participants. The data regarding insights into the challenges and opportunities for women in these fields is presented. The research effort project expands upon existing linkages between universities to support professional development and research effort in this region of the world. Findings indicate the positive reception of this kind of professional development by the participating women. Survey data also reflects the particular cultural challenges professional women in STEM education face in Ethiopia as well as the global challenges of balancing family expectations with career development.

Keywords: Ethiopian women, STEM leadership, professional development, gender equity

Procedia PDF Downloads 80
668 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 227
667 The Influence of Forest Management Histories on Dead and Habitat Trees in the Old Growth Forest in Northern Iran

Authors: Kiomars Sefidi

Abstract:

Dead and habitat tree such as fallen logs, snags, stumps and cracks and loos bark etc. is regarded as an important ecological component of forests on which many forest dwelling species depend, yet its relation to management history in Caspian forest has gone unreported. The aim of research was to compare the amounts of dead tree and habitat in the forests with historically different intensities of management, including: forests with the long term implication of management (PS), the short-term implication of management (NS) which were compared with semi virgin forest (GS). The number of 405 individual dead and habitat trees were recorded and measured at 109 sampling locations. ANOVA revealed volume of the dead tree in the form and decay classes significantly differ within sites and dead volume in the semi virgin forest significantly higher than managed sites. Comparing the amount of dead and habitat tree in three sites showed that dead tree volume related with management history and significantly differ in three study sites. Also, the numbers of habitat trees including cavities, Cracks and loose bark and Fork split trees significantly vary among sites. Reaching their highest in virgin site and their lowest in the site with the long term implication of management, it was concluded that forest management cause reduction of the amount of dead and habitat tree. Forest management history affect the forest's ability to generate dead tree especially in a large size, thus managing this forest according to ecological sustainable principles require a commitment to maintaining stand structure that allow, continued generation of dead tree in a full range of size.

Keywords: forest biodiversity, cracks trees, fork split trees, sustainable management, Fagus orientalis, Iran

Procedia PDF Downloads 531
666 The Biofertilizer Effect of Pseudomonas of Salt Soils of the North-West Algerian, Study of Comportment of Bean (Vicia Faba)

Authors: Djoudi Abdelhak, Djibaoui Rachid, Reguieg Yassaad Houcine

Abstract:

Our study focuses on the identification of some species of Pseudomonas (P4, P5, P7 and P8) isolated from saline soils in northwestern Algeria and the effect of their metabolites on the growth of Alternaria alternata the causative agent of the blight of the bean disease (Vicia faba). We are also interested in stimulating the growth of this plant species in saline conditions (60 mM/l NaCl) and the absence of salts. The analysis focuses on rates of inhibition of mycelial growth of Alternaria alternata strain and the rate of growth of plants inoculated with strains of Pseudomonas expressed by biometrics. According to the results of the in-vitro test, P5 and P8 species and their metabolites showed a significant effect on mycelia growth and production of spores of Alternaria alternata. The in-vivo test shows that the species P8 and P5 were significantly and positively influencing the growth in biometric parameters of the bean in saline and salt-free condition. Inoculation with strain P5 has promoted the growth of the bean in stem height, stem fresh weight and dry weight of stems of 108.59%, 115.28%, 104.33%, respectively, in the presence of salt Inoculation with strain P5 has fostered the growth of the bean stem fresh weight of 112.47% in the presence of salt The effect of Pseudomonas species on the development of Vicia faba and the growth of Alternaria alternata is considering new techniques and methods of biological production and crop protection.

Keywords: pseudomonas, vicia faba, alternaria alternata, promoting of plant growth

Procedia PDF Downloads 368
665 Mycophenolate Mofetil Increases Mucin Expression in Primary Cultures of Oral Mucosal Epithelial Cells for Application in Limbal Stem Cell Deficiency

Authors: Sandeep Kumar Agrawal, Aditi Bhattacharya, Janvie Manhas, Krushna Bhatt, Yatin Kholakiya, Nupur Khera, Ajoy Roychoudhury, Sudip Sen

Abstract:

Autologous cultured explants of human oral mucosal epithelial cells (OMEC) are a potential therapeutic modality for limbal stem cell deficiency (LSCD). Injury or inflammation of the ocular surface in the form of burns, chemicals, Stevens Johnson syndrome, ocular cicatricial pemphigoid etc. can lead to destruction and deficiency of limbal stem cells. LSCD manifests in the form of severe ocular surface diseases (OSD) characterized by persistent and recurrent epithelial defects, conjuntivalisation and neovascularisation of the corneal surface, scarring and ultimately opacity and blindness. Most of the cases of OSD are associated with severe dry eye pertaining to diminished mucin and aqueous secretion. Mycophenolate mofetil (MMF) has been shown to upregulate the mucin expression in conjunctival goblet cells in vitro. The aim of this study was to evaluate the effects of MMF on mucin expression in primary cultures of oral mucosal epithelial cells. With institutional ethics committee approval and written informed consent, thirty oral mucosal epithelial tissue samples were obtained from patients undergoing oral surgery for non-malignant conditions. OMEC were grown on human amniotic membrane (HAM, obtained from expecting mothers undergoing elective caesarean section) scaffold for 2 weeks in growth media containing DMEM & Ham’s F12 (1:1) with 10% FBS and growth factors. In vitro dosage of MMF was standardised by MTT assay. Analysis of stem cell markers was done using RT-PCR while mucin mRNA expression was quantified using RT-PCR and q-PCR before and after treating cultured OMEC with graded concentrations of MMF for 24 hours. Protein expression was validated using immunocytochemistry. Morphological studies revealed a confluent sheet of proliferating, stratified oral mucosal epithelial cells growing over the surface of HAM scaffold. The presence of progenitor stem cell markers (p63, p75, β1-Integrin and ABCG2) and cell surface associated mucins (MUC1, MUC15 and MUC16) were elucidated by RT-PCR. The mucin mRNA expression was found to be upregulated in MMF treated primary cultures of OMEC, compared to untreated controls as quantified by q-PCR with β-actin as internal reference gene. Increased MUC1 protein expression was validated by immunocytochemistry on representative samples. Our findings conclude that OMEC have the ability to form a multi-layered confluent sheet on the surface of HAM similar to a cornea, which is important for the reconstruction of the damaged ocular surface. Cultured OMEC has stem cell properties as demonstrated by stem cell markers. MMF can be a novel enhancer of mucin production in OMEC. It has the potential to improve dry eye in patients undergoing OMEC transplantation for bilateral OSD. Further clinical trials are required to establish the role of MMF in patients undergoing OMEC transplantation.

Keywords: limbal stem cell deficiency, mycophenolate mofetil, mucin, ocular surface disease

Procedia PDF Downloads 302
664 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 152
663 High School Stem Curriculum and Example of Laboratory Work That Shows How Microcomputers Can Help in Understanding of Physical Concepts

Authors: Jelena Slugan, Ivica Ružić

Abstract:

We are witnessing the rapid development of technologies that change the world around us. However, curriculums and teaching processes are often slow to adapt to the change; it takes time, money and expertise to implement technology in the classroom. Therefore, the University of Split, Croatia, partnered with local school Marko Marulić High School and created the project "Modern competence in modern high schools" as part of which five different curriculums for STEM areas were developed. One of the curriculums involves combining information technology with physics. The main idea was to teach students how to use different circuits and microcomputers to explore nature and physical phenomena. As a result, using electrical circuits, students are able to recreate in the classroom the phenomena that they observe every day in their environment. So far, high school students had very little opportunity to perform experiments independently, and especially, those physics experiment did not involve ICT. Therefore, this project has a great importance, because the students will finally get a chance to develop themselves in accordance to modern technologies. This paper presents some new methods of teaching physics that will help students to develop experimental skills through the study of deterministic nature of physical laws. Students will learn how to formulate hypotheses, model physical problems using the electronic circuits and evaluate their results. While doing that, they will also acquire useful problem solving skills.

Keywords: ICT in physics, curriculum, laboratory activities, STEM (science, technology, engineering, mathematics)

Procedia PDF Downloads 173
662 Activity Antidiarrheal Extract Kedondong Leaf in Balb/C Strain Male Mice Invivo

Authors: Johanrik, Arini Aprilliani, Fikri Haikal, Diyas Yuca, Muhammad A. Latif, Edijanti Goenarwo, Nurita P. Sari

Abstract:

Diarrhea is one of the leading causes of morbidity and mortality in many countries, as well as responsible for the deaths of millions of people each year. Previous research showed that the leaves, bark, and root bark of kedondong contains saponins, tannins, and flavonoids. Tannins have anti-diarrheal effects that work as the freeze of protein / astrigen, and may inhibit the secretion of chloride over the tannate bonding between protein in the intestines. Chemical compounds of flavonoids also have an effect as anti-diarrheal block receptors Cl ˉ in intestinal thus reducing the secretion of Cl ˉ to the intestinal lume. This research aims to know the anti-diarrheal activity of extracts kedondong leaf in mice Balb/C strain males in vivo. This research also proves kedondong leaves as an anti-diarrhea through trial efficacy of kedondong leaves as antisekretori and antimotilitas. This research using post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. If the data obtained homogenous then using ANOVA test. This research using ethanolic extracts kedondong leaf 200, 400 and 800 mg/kgBW to prove there is anti-diarrhea it makes into six treatment groups, for anti-secretory it makes into five treatment groups and anti-motility became five treatment groups. The result showed dose of ethanolic extracts kedondong leaf 800 mg/kgBW have significant value (p < 0.005). The conclusion from this extracts kedondong leaf research 800 mg/kgBW have pharmacological effects as antidiarrhea on Balb/C strain male mice with a mechanism of action as antisecretory and antimotility.

Keywords: anti-diarrhea, anti-secretory, anti-motility, kedondong leaf

Procedia PDF Downloads 423
661 Identification of Genes Regulating Differentiation and Stemness of Human Mesenchymal Stem Cells for Gene Therapy in Regenerative Medicine

Authors: Tong Ming Liu

Abstract:

Human mesenchymal stem cells (MSCs) represent the most used stem cells for clinical application, which have been used in over 1000 clinical trials to treat over 30 diseases due to multilineage differentiation potential, secretome and immunosuppression. Gene therapies of MSCs hold great promise in the treatment of many diseases due to enhanced MSC-based clinical outcomes. To identify genes for gene therapy of MSCs, by comparing gene expression profile before and after MSC differentiation following by functional screening, we have identified ZNF145 that regulated MSC differentiation. Forced expression of ZNF145 resulted in enhanced in vitro chondrogenesis of MSCs as an upstream factor of SOX9 and improved osteochondral repair upon implant into osteochondral defects in rodents. By comparing gene expression profile during differentiation of iPSCs toward MSCs, we also identified gene HOX regulating MSC stemness, which was much downregulated in late-passaged MSCs. Knockdown of this gene greatly compromised MSC stemness including abolished proliferation, decreased CFU-F, promoted senescence and reduced expression of cell surface antigens linked to the MSC phenotype. In addition, multi-linage differentiation was also greatly impaired. Notably, HOX overexpression resulted in improved multi-lineage differentiation. In the mechanism, HOX expression significantly deceased in late passage of MSCs compared with early passage of MSCs, correlating with MSC important genes. ChIP-seq data shown that HOX binds to genes related to MSC self-renewal and differentiation. Most importantly, most HOX binding sites are lost in late passage of MSCs. HOX exerts its effects by directing binding Twist1, one important gene of MSCs. The identification of the genes regulating MSC differentiation and stemness will provide and promising strategies for gene therapy of MSCs in regenerative medicine.

Keywords: mesenchymal stem cell, novel transcription factor, stemness, gene therapy, cartilage repair, signaling pathway

Procedia PDF Downloads 19
660 Comparison of Cardiomyogenic Potential of Amniotic Fluid Mesenchymal Stromal Cells Derived from Normal and Isolated Congenital Heart Defective Fetuses

Authors: Manali Jain, Neeta Singh, Raunaq Fatima, Soniya Nityanand, Mandakini Pradhan, Chandra Prakash Chaturvedi

Abstract:

Isolated Congenital Heart Defect (ICHD) is the major cause of neonatal death worldwide among all forms of CHDs. A significant proportion of fetuses with ICHD die in the neonatal period if no treatment is provided. Recently, stem cell therapies have emerged as a potential approach to ameliorate ICHD in children. ICHD is characterized by cardiac structural abnormalities during embryogenesis due to alterations in the cardiomyogenic properties of a pool of cardiac progenitors/ stem cells associated with fetal heart development. The stem cells present in the amniotic fluid (AF) are of fetal origin and may reflect the physiological and pathological changes in the fetus during embryogenesis. Therefore, in the present study, the cardiomyogenic potential of AF-MSCs derived from fetuses with ICHD (ICHD AF-MSCs) has been evaluated and compared with that of AF-MSCs of structurally normal fetuses (normal AF-MSCs). Normal and ICHD AF-MSC were analyzed for the expression of cardiac progenitor markers viz., stage-specific embryonic antigen-1 (SSEA-1), vascular endothelial growth factor 2 (VEGFR-2) and platelet-derived growth factor receptor-alpha (PDGFR-α) by flow cytometry. The immunophenotypic characterization revealed that ICHD AF-MSCs have significantly lower expression of cardiac progenitor markers VEGFR-2 (0.14% ± 0.6 vs.48.80% ± 0.9; p <0.01), SSEA-1 (70.86% ± 2.4 vs. 88.36% ±2.7; p <0.01), and PDGFR-α (3.92% ± 1.8 vs. 47.59% ± 3.09; p <0.01) in comparison to normal AF-MSCs. Upon induction with 5’-azacytidine for 21 days, ICHD AF-MSCs showed a significantly down-regulated expression of cardiac transcription factors such as GATA-4 (0.4 ± 0.1 vs. 6.8 ± 1.2; p<0.01), ISL-1 (2.3± 0.6 vs. 14.3 ± 1.12; p<0.01), NK-x 2-5 (1.1 ± 0.3 vs. 14.1 ±2.8; p<0.01), TBX-5 (0.4 ± 0.07 vs. 4.4 ± 0.3; p<0.001), and TBX-18 (1.3 ± 0.2 vs. 4.19 ± 0.3; p<0.01) when compared with the normal AF-MSCs. Furthermore, immunocytochemical staining revealed that both types of AF-MSCs could differentiate into cardiovascular lineages and express cardiomyogenic, endothelial, and smooth muscle actin markers, viz., cardiac troponin (cTNT), CD31, and alpha-smooth muscle actin (α-SMA). However, normal AF-MSCs showed an enhanced expression of cTNT (p<0.001), CD31 (p<0.01), and α-SMA (p<0.05), compared to ICHD AF-MSCs. Overall, these results suggest that the ICHD-AF-MSCs have a defective cardiomyogenic differentiation potential and that the defects in these stem cells may have a role in the pathogenesis of ICHD.

Keywords: amniotic fluid, cardiomyogenic potential, isolated congenital heart defect, mesenchymal stem cells

Procedia PDF Downloads 74
659 Expanding Access and Deepening Engagement: Building an Open Source Digital Platform for Restoration-Based Stem Education in the Largest Public-School System in the United States

Authors: Lauren B. Birney

Abstract:

This project focuses upon the expansion of the existing "Curriculum and Community Enterprise for the Restoration of New York Harbor in New York City Public Schools" NSF EHR DRL 1440869, NSF EHR DRL 1839656 and NSF EHR DRL 1759006. This project is recognized locally as “Curriculum and Community Enterprise for Restoration Science,” or CCERS. CCERS is a comprehensive model of ecological restoration-based STEM education for urban public-school students. Following an accelerated rollout, CCERS is now being implemented in 120+ Title 1 funded NYC Department of Education middle schools, led by two cohorts of 250 teachers, serving more than 11,000 students in total. Initial results and baseline data suggest that the CCERS model, with the Billion Oyster Project (BOP) as its local restoration ecology-based STEM curriculum, is having profound impacts on students, teachers, school leaders, and the broader community of CCERS participants and stakeholders. Students and teachers report being receptive to the CCERS model and deeply engaged in the initial phase of curriculum development, citizen science data collection, and student-centered, problem-based STEM learning. The BOP CCERS Digital Platform will serve as the central technology hub for all research, data, data analysis, resources, materials and student data to promote global interactions between communities, Research conducted included qualitative and quantitative data analysis. We continue to work internally on making edits and changes to accommodate a dynamic society. The STEM Collaboratory NYC® at Pace University New York City continues to act as the prime institution for the BOP CCERS project since the project’s inception in 2014. The project continues to strive to provide opportunities in STEM for underrepresented and underserved populations in New York City. The replicable model serves as an opportunity for other entities to create this type of collaboration within their own communities and ignite a community to come together and address the notable issue. Providing opportunities for young students to engage in community initiatives allows for a more cohesive set of stakeholders, ability for young people to network and provide additional resources for those students in need of additional support, resources and structure. The project has planted more than 47 million oysters across 12 acres and 15 reef sites, with the help of more than 8,000 students and 10,000 volunteers. Additional enhancements and features on the BOP CCERS Digital Platform will continue over the next three years through funding provided by the National Science Foundation, NSF DRL EHR 1759006/1839656 Principal Investigator Dr. Lauren Birney, Professor Pace University. Early results from the data indicate that the new version of the Platform is creating traction both nationally and internationally among community stakeholders and constituents. This project continues to focus on new collaborative partners that will support underrepresented students in STEM Education. The advanced Digital Platform will allow for us connect with other countries and networks on a larger Global scale.

Keywords: STEM education, environmental restoration science, technology, citizen science

Procedia PDF Downloads 62
658 Ethiopian Women in Science, Technology, Engineering, and Mathematics Higher Education: Insights Gained Through an Onsite Culturally Embedded Workshop

Authors: Araceli Martinez Ortiz, Gillian U Bayne, Solomon Abraham

Abstract:

This paper describes research led by faculty from three American universities and four Ethiopian universities on the delivery of professional leadership development for early-career female Ethiopian university instructors in the Science, Technology, Engineering, and Mathematics (STEM) fields. The objective was to carry out a case study focused on the impact of an innovative intervention program designed to assist in the empowerment and leadership development related to teaching effectiveness, scholarly activity participation, and professional service participation by female instructors. This research was conducted utilizing a case study methodology for the weeklong intervention and a survey to capture the voices of the leadership program participants. The data regarding insights into the challenges and opportunities for women in these fields is presented. The research effort project expands upon existing linkages between universities to support professional development and research effort in this region of the world. Findings indicate the positive reception of this kind of professional development by the participating women. Survey data also reflects the educational technology and cultural challenges professional women in STEM education face in Ethiopia as well as the global challenges of balancing family expectations with career development.

Keywords: women, STEM education, higher education, Ethiopia

Procedia PDF Downloads 38
657 Anti-Diarrheal Activity of Extracts Kedondong Leaf in Mice Balb/C Strain Males in Vivo

Authors: Johanrik, Arini Apriliani, Fikri Haikal, Dias Yuca, Muhammad Abdul Latif, Edijanti Goenarwo, Nurita Pratama Sari

Abstract:

Diarrhea is one of the leading causes of morbidity and mortality in many countries, as well as responsible for the deaths of millions of people each year. Previous research showed that the leaves, bark, and root bark of kedondong contains saponins, tannins, and flavonoids. Tannins have anti-diarrheal effects that work as the freeze of protein/astringent, and may inhibit the secretion of chloride over the tannate bonding between protein in the intestines. Chemical compounds of flavonoids also have an effect as anti-diarrheal block receptors Cl ˉ in intestinal thus reducing the secretion of Cl ˉ to the intestinal lume .This research aims to know the anti-diarrheal activity of extracts kedondong leaf in mice Balb/C strain males in vivo. This research also proves kedondong leaves as an anti-diarrhea through trial efficacy of kedondong leaves as antisekretori and antimotilitas. This research using post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. If the data obtained homogenous then using ANOVA test. This research using ethanolic extracts kedondong leaf 200, 400 and 800 mg/kgBW to prove there is anti-diarrhea it makes into six treatment groups, for anti-secretory it makes into five treatment groups and anti-motility became five treatment groups. The result showed dose of ethanolic extracts kedondong leaf 800 mg/kgBW have significant value (p<0.005). The conclusion from this extracts kedondong leaf research 800 mg/kgBW have pharmacological effects as antidiarrhea on Balb/C strain male mice with a mechanism of action as anti-secretory and anti-motility.

Keywords: anti-diarrhea, anti-secretory, anti-motility, kedondong leaf

Procedia PDF Downloads 477