Search results for: physiological signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1922

Search results for: physiological signals

1922 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 109
1921 The Estimation of Human Vital Signs Complexity

Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius

Abstract:

Non-stationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables interactions.

Keywords: cardiac diseases, complex systems theory, ECG analysis, matrix analysis

Procedia PDF Downloads 343
1920 Signals Monitored During Anaesthesia

Authors: Launcelot McGrath

Abstract:

A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: biological signals, signal acquisition, anaesthesiology, patient monitoring

Procedia PDF Downloads 137
1919 Signals Monitored during Anaesthesia

Authors: Launcelot.McGrath

Abstract:

A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Biosignal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: general biosignals, anaesthesia, biological, electroencephalogram

Procedia PDF Downloads 144
1918 Remote Wireless Patient Monitoring System

Authors: Sagar R. Patil, Dinesh R. Gawade, Sudhir N. Divekar

Abstract:

One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications.

Keywords: patient monitoring, wireless patient monitoring, bio-medical signals, physiological signals, embedded system, Android OS, healthcare, pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate, electrocardiogram (ECG)

Procedia PDF Downloads 570
1917 Signals Monitored During Anaesthesia

Authors: Launcelot McGrath, Xiaoxiao Liu, Colin Flanagan

Abstract:

It is widely recognised that a comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. There are tremendous biological signals during anaesthesia, and not all of them are important, which to choose to observe is a significant decision. It is important that the anaesthesiologist understand both the signals themselves, and the limitations introduced by the processes of acquisition. In this article, we provide an all-sided overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: general biosignals, anaesthesia, biological, electroencephalogram

Procedia PDF Downloads 104
1916 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 694
1915 Implementation of Clinical Monitoring System of Physiological Parameters

Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi

Abstract:

Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.

Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health

Procedia PDF Downloads 471
1914 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: e-learning, physiological index, physiological signal, state of learning

Procedia PDF Downloads 376
1913 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 167
1912 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques

Authors: Raymond Feng, Shadi Ghiasi

Abstract:

An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.

Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals

Procedia PDF Downloads 60
1911 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller

Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares

Abstract:

The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.

Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller

Procedia PDF Downloads 365
1910 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition

Procedia PDF Downloads 331
1909 An EEG-Based Scale for Comatose Patients' Vigilance State

Authors: Bechir Hbibi, Lamine Mili

Abstract:

Understanding the condition of comatose patients can be difficult, but it is crucial to their optimal treatment. Consequently, numerous scoring systems have been developed around the world to categorize patient states based on physiological assessments. Although validated and widely adopted by medical communities, these scores still present numerous limitations and obstacles. Even with the addition of additional tests and extensions, these scoring systems have not been able to overcome certain limitations, and it appears unlikely that they will be able to do so in the future. On the other hand, physiological tests are not the only way to extract ideas about comatose patients. EEG signal analysis has helped extensively to understand the human brain and human consciousness and has been used by researchers in the classification of different levels of disease. The use of EEG in the ICU has become an urgent matter in several cases and has been recommended by medical organizations. In this field, the EEG is used to investigate epilepsy, dementia, brain injuries, and many other neurological disorders. It has recently also been used to detect pain activity in some regions of the brain, for the detection of stress levels, and to evaluate sleep quality. In our recent findings, our aim was to use multifractal analysis, a very successful method of handling multifractal signals and feature extraction, to establish a state of awareness scale for comatose patients based on their electrical brain activity. The results show that this score could be instantaneous and could overcome many limitations with which the physiological scales stock. On the contrary, multifractal analysis stands out as a highly effective tool for characterizing non-stationary and self-similar signals. It demonstrates strong performance in extracting the properties of fractal and multifractal data, including signals and images. As such, we leverage this method, along with other features derived from EEG signal recordings from comatose patients, to develop a scale. This scale aims to accurately depict the vigilance state of patients in intensive care units and to address many of the limitations inherent in physiological scales such as the Glasgow Coma Scale (GCS) and the FOUR score. The results of applying version V0 of this approach to 30 patients with known GCS showed that the EEG-based score similarly describes the states of vigilance but distinguishes between the states of 8 sedated patients where the GCS could not be applied. Therefore, our approach could show promising results with patients with disabilities, injected with painkillers, and other categories where physiological scores could not be applied.

Keywords: coma, vigilance state, EEG, multifractal analysis, feature extraction

Procedia PDF Downloads 65
1908 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 49
1907 A Review of Physiological Measures for Cognitive Workload Assessment of Aircrew

Authors: Naveed Tahir, Adnan Maqsood

Abstract:

Cognitive workload is a significant factor affecting user performance, and it has been broadly investigated for its application in ergonomics as well as in designing and optimizing effective human-machine interactions. It is mentally challenging to maneuver an aircraft, and pilots must control the aircraft and adequately communicate to the verbal-auditory stimuli. Several physiological measures have long been researched and used to demonstrate the cognitive workload. In our current study, we have summarized recent findings of the effectiveness, accuracy, and applicability of commonly used physiological measures in evaluating cognitive workload. We have also highlighted on the advancements in physiological measures. The strength and limitations of physiological measures have also been discussed to assess the cognitive workload of people, especially the aircrews in laboratory settings and real-time situations. We have presented the research findings of the physiological measures to base suggestions on the proper applications of the measures and settings demanding the use of single measure or their combinations.

Keywords: aircrew, cognitive workload, subjective measure, physiological measure, performance measure

Procedia PDF Downloads 161
1906 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 344
1905 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology

Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury

Abstract:

An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.

Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin

Procedia PDF Downloads 99
1904 Theoretical BER Analyzing of MPSK Signals Based on the Signal Space

Authors: Jing Qing-feng, Liu Danmei

Abstract:

Based on the optimum detection, signal projection and Maximum A Posteriori (MAP) rule, Proakis has deduced the theoretical BER equation of Gray coded MPSK signals. Proakis analyzed the BER theoretical equations mainly based on the projection of signals, which is difficult to be understood. This article solve the same problem based on the signal space, which explains the vectors relations among the sending signals, received signals and noises. The more explicit and easy-deduced process is illustrated in this article based on the signal space, which can illustrated the relations among the signals and noises clearly. This kind of deduction has a univocal geometry meaning. It can explain the correlation between the production and calculation of BER in vector level.

Keywords: MPSK, MAP, signal space, BER

Procedia PDF Downloads 346
1903 Early Warning Signals: Role and Status of Risk Management in Small and Medium Enterprises

Authors: Alexander Kelíšek, Denisa Janasová, Veronika Mitašová

Abstract:

Weak signals using is often associated with early warning. It is possible to find a link between early warning, respectively early problems detection and risk management. The idea of early warning is very important in the context of crisis management because of the risk prevention possibility. Weak signals are likened to risk symptoms. Nowadays, their usefulness as a tool of proactive problems solving is emphasized. Based on it, it is possible to use weak signals not only in strategic planning, project management, or early warning system, but also as a subsidiary element in risk management. The main question is how to effectively integrate weak signals into risk management. The main aim of the paper is to point out the possibilities of weak signals using in small and medium enterprises risk management.

Keywords: early warning system, weak signals, risk management, small and medium enterprises (SMEs)

Procedia PDF Downloads 426
1902 Study of Mobile Game Addiction Using Electroencephalography Data Analysis

Authors: Arsalan Ansari, Muhammad Dawood Idrees, Maria Hafeez

Abstract:

Use of mobile phones has been increasing considerably over the past decade. Currently, it is one of the main sources of communication and information. Initially, mobile phones were limited to calls and messages, but with the advent of new technology smart phones were being used for many other purposes including video games. Despite of positive outcomes, addiction to video games on mobile phone has become a leading cause of psychological and physiological problems among many people. Several researchers examined the different aspects of behavior addiction with the use of different scales. Objective of this study is to examine any distinction between mobile game addicted and non-addicted players with the use of electroencephalography (EEG), based upon psycho-physiological indicators. The mobile players were asked to play a mobile game and EEG signals were recorded by BIOPAC equipment with AcqKnowledge as data acquisition software. Electrodes were places, following the 10-20 system. EEG was recorded at sampling rate of 200 samples/sec (12,000samples/min). EEG recordings were obtained from the frontal (Fp1, Fp2), parietal (P3, P4), and occipital (O1, O2) lobes of the brain. The frontal lobe is associated with behavioral control, personality, and emotions. The parietal lobe is involved in perception, understanding logic, and arithmetic. The occipital lobe plays a role in visual tasks. For this study, a 60 second time window was chosen for analysis. Preliminary analysis of the signals was carried out with Acqknowledge software of BIOPAC Systems. From the survey based on CGS manual study 2010, it was concluded that five participants out of fifteen were in addictive category. This was used as prior information to group the addicted and non-addicted by physiological analysis. Statistical analysis showed that by applying clustering analysis technique authors were able to categorize the addicted and non-addicted players specifically on theta frequency range of occipital area.

Keywords: mobile game, addiction, psycho-physiology, EEG analysis

Procedia PDF Downloads 164
1901 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving

Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco

Abstract:

Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.

Keywords: augmented reality, driving, physiological signals, test platform

Procedia PDF Downloads 140
1900 Psychophysiological Synchronization between the Manager and the Subordinate during a Performance Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Previous studies have shown that emotional intelligence (EI) has an important role in leadership and social interaction. On the other hand, physiological synchronization between two interacting participants has been related to, for example, intensity of the interaction, and interestingly also to empathy. It is suggested that the amount of covariation in physiological signals between the two interacting persons would also be related to how the discussion is perceived subjectively. To study the interrelations between physiological synchronization, emotional intelligence, and subjective perception of the interaction, performance review discussions between real manager – subordinate dyads were studied using psychophysiological measurements and self-reports. The participants consisted of 40 managers, of which 24 were female, and 78 of their subordinates, of which 45 were female. The participants worked in various fields, for example banking, education, and engineering. The managers had a normal performance review discussion with two subordinates, except two managers who, due to scheduling issues, had discussion with only one subordinate. The managers were on average 44.5 years old, and the subordinates on average 45.5 years old. Written consent, in accordance with the Declaration of Helsinki, was obtained from all the participants. After the discussion, the participants filled a questionnaire assessing their emotions during the discussion. This included a self-assessment manikin (SAM) scale for the emotional valence during the discussion, with a 9-point graphical scale representing a manikin whose facial expressions ranged from smiling and happy to frowning and unhappy. In addition, the managers filled EI360, a 37-item self-report trait emotional intelligence questionnaire. The psychophysiological activity of the participants was recorded using two Varioport-B portable recording devices. Cardiac activity (ECG, electrocardiogram) was measured with two electrodes placed on the torso. Inter-beat interval (IBI, time between two successive heart beats) was calculated from the ECG signals. The facial muscle activation (EMG, electromyography) was recorded on three sites of the left side of the face: zygomaticus major (cheek muscle), orbicularis oculi (periocular muscle), and corrugator supercilii (frowning muscle). The facial-EMG signals were rectified and smoothed, and cross-coherences were calculated between members of each dyad, for all the three EMG signals, for the baseline and discussion periods. The values were natural-log transformed to normalize the distributions. Higher cross-coherence during the discussion between the manager’s and the subordinate’s zygomatic muscles was related to more positive valence self-reported emotions, F(1; 66,137) = 7,051; p=0,01. Thus, synchronized cheek muscle activation, either due to synchronous smiling or talking, was related to more positive perception of the discussion. In addition, higher IBI synchronization between the manager and the subordinate during the discussion was related to the manager’s higher self-reported emotional intelligence, F(1; 27,981)=4,58; p=0,041. That is, the EI was related to synchronous cardiac activity and possibly to similar physiological arousal levels. The results imply that the psychophysiological synchronization could be a potentially useful index in the study of social interaction and a valuable tool in the coaching of leadership skills in organizational contexts.

Keywords: emotional intelligence, leadership, psychophysiology, social interaction, synchronization

Procedia PDF Downloads 318
1899 Electroencephalogram Signals Controlling a Parallax Boe-Bot Robot

Authors: Nema M. Salem, Hanan A. Altukhaifi, Amal Mukhtar, Reemaz K. Hetaimish

Abstract:

Recently, BCI field of research has gained a lot of interest. Apart from motor neuroprosthetics, many studies showed the possibility of controlling a virtual environment of a videogame using the acquired electroencephalogram signals (EEG) from the gamer. In addition, another study had successfully moved a farm tractor using the human’s EEG signals. This article utilizes the use of EEG signals, as a source of technology, in controlling a Parallax Boe-Bot robot. The commercial Emotive Epoc headset has been used in acquiring the EEG signals from rested subjects. Because the human's visual cortex can successfully differentiate between different colors, the red and green colors are used as visual stimuli for generating EEG signals using the Epoc. Arduino and Labview are used to translate the virtually pressed keys into instructions controlling the motion and rotation of the robot. Optimistic results have been achieved except for minor delay and accuracy in the robot’s response.

Keywords: BCI, Emotiv Epoc headset, EEG, Labview, Arduino applications, robot

Procedia PDF Downloads 520
1898 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 91
1897 The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes.

Keywords: auditory stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 534
1896 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 281
1895 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 319
1894 The Non-Linear Analysis of Brain Response to Visual Stimuli

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes.

Keywords: visual stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 560
1893 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 104