Search results for: performance prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13995

Search results for: performance prediction

13755 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 288
13754 Model Averaging in a Multiplicative Heteroscedastic Model

Authors: Alan Wan

Abstract:

In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.

Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk

Procedia PDF Downloads 341
13753 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 75
13752 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 115
13751 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 24
13750 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction

Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian

Abstract:

Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.

Keywords: marijuana, youth, integrative model of behavioral prediction, Iran

Procedia PDF Downloads 534
13749 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 86
13748 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 463
13747 Mobile Based Long Range Weather Prediction System for the Farmers of Rural Areas of Pakistan

Authors: Zeeshan Muzammal, Usama Latif, Fouzia Younas, Syed Muhammad Hassan, Samia Razaq

Abstract:

Unexpected rainfall has always been an issue in the lifetime of crops and brings destruction for the farmers who harvest them. Unfortunately, Pakistan is one of the countries in which untimely rain impacts badly on crops like wash out of seeds and pesticides etc. Pakistan’s GDP is related to agriculture, especially in rural areas farmers sometimes quit farming because leverage of huge loss to their crops. Through our surveys and research, we came to know that farmers in the rural areas of Pakistan need rain information to avoid damages to their crops from rain. We developed a prototype using ICTs to inform the farmers about rain one week in advance. Our proposed solution has two ways of informing the farmers. In first we send daily messages about weekly prediction and also designed a helpline where they can call us to ask about possibility of rain.

Keywords: ICTD, farmers, mobile based, Pakistan, rural areas, weather prediction

Procedia PDF Downloads 543
13746 Applying the Regression Technique for ‎Prediction of the Acute Heart Attack ‎

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of ‎death in the world. Some of these deaths occur even before the patient ‎reaches the hospital. Myocardial infarction occurs as a result of ‎impaired blood supply. Because the most of these deaths are due to ‎coronary artery disease, hence the awareness of the warning signs of a ‎heart attack is essential. Some heart attacks are sudden and intense, but ‎most of them start slowly, with mild pain or discomfort, then early ‎detection and successful treatment of these symptoms is vital to save ‎them. Therefore, importance and usefulness of a system designing to ‎assist physicians in the early diagnosis of the acute heart attacks is ‎obvious.‎ The purpose of this study is to determine how well a predictive ‎model would perform based on the only patient-reportable clinical ‎history factors, without using diagnostic tests or physical exams. This ‎type of the prediction model might have application outside of the ‎hospital setting to give accurate advice to patients to influence them to ‎seek care in appropriate situations. For this purpose, the data were ‎collected on 711 heart patients in Iran hospitals. 28 attributes of clinical ‎factors can be reported by patients; were studied. Three logistic ‎regression models were made on the basis of the 28 features to predict ‎the risk of heart attacks. The best logistic regression model in terms of ‎performance had a C-index of 0.955 and with an accuracy of 94.9%. ‎The variables, severe chest pain, back pain, cold sweats, shortness of ‎breath, nausea, and vomiting were selected as the main features.‎

Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic ‎regression‎

Procedia PDF Downloads 428
13745 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 96
13744 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 126
13743 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 99
13742 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 555
13741 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 24
13740 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 61
13739 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 108
13738 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 68
13737 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 127
13736 STTS-EAD: Improving Spatio-Temporal Learning Based Time Series Prediction via Embedded Anomaly Detection

Authors: Tianhao Zhang, Cen Chen, Dawei Cheng, Yuqi Liang, Yuanyuan Liang

Abstract:

Dealing with anomalies is a crucial preprocessing step for multivariate time series prediction. However, existing methods that separate anomaly preprocessing and model training into two stages have certain limitations. Specifically, these methods fail to leverage auxiliary information necessary to distinguish latent anomalies related to spatiotemporal factors during the preprocessing stage. Instead, they solely rely on data distribution for detection which may lead to incorrect processing of many samples that are beneficial for training. To address this, we propose STTS-EAD, an end-to-end method that seamlessly integrates anomaly detection into the training process of multivariate time series forecasting and aims to improve Spatio-Temporal learning based Time Series prediction via Embedded Anomaly Detection. Our proposed STTS-EAD leverages spatio-temporal information for forecasting and anomaly detection, with the two parts alternately executed and optimized for each other. To the best of our knowledge, STTS-EAD is the first to integrate anomaly detection and forecasting tasks in the training phase for improving the accuracy of multivariate time series forecasting. Extensive experiments on a public stock dataset and two real-world sales datasets from a renowned coffee chain enterprise show that our proposed method can effectively process detected anomalies in the training stage to improve forecasting performance in the inference stage and significantly outperform baselines.

Keywords: multivariate time series, anomaly detection, time series forecasting, spatiotemporal feature learning

Procedia PDF Downloads 14
13735 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software

Authors: Marine Segui, Ruxandra Mihaela Botez

Abstract:

OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.

Keywords: aerodynamic, coefficient, cruise, improving, longitudinal, openVSP, solver, time

Procedia PDF Downloads 205
13734 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 134
13733 Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements

Authors: Shibei Huang

Abstract:

In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question.

Keywords: existing building, sensor, thermal analysis, retrofit

Procedia PDF Downloads 31
13732 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 522
13731 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 24
13730 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 157
13729 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 24
13728 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 175
13727 Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations

Authors: Y. Khulief, S. Bashmal, S. Said, D. Al-Otaibi, K. Mansour

Abstract:

The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations considered

Keywords: fluid-structure interaction, cross-flow, heat exchangers,

Procedia PDF Downloads 252
13726 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 445