Search results for: pellets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 106

Search results for: pellets

46 Effects of Li2O Doping on Mechanical and Electrical Properties of Bovine Hydroxyapatite Composites (BHA)

Authors: Sibel Daglilar, Isil Kerti, Murat Karagoz, Fatih Dumludag, Oguzhan Gunduz, Faik Nuzhet Oktar

Abstract:

Hydroxyapatite (HA) materials have common use in bone repairing due to its ability to accelerate the bone growth around the implant. In spite of being a biocompatible and bioactive material, HA has a limited usage as an implant material because of its weak mechanical properties. HA based composites are required to improve the strength and toughness properties of the implant materials without compromising of biocompatibility. The excellent mechanical properties and higher biocompatibilities are expected from each of biomedical composites. In this study, HA composites were synthesized by using bovine bone reinforced doped with different amount of (wt.%) Li2O. The pressed pellets were sintered at various sintering temperatures between 1000ºC and 1300°C, and mechanical, electrical properties of the obtained products were characterized. In addition to that, in vitro stimulated body fluid (SBF) tests for these samples were conducted. The most suitable composite composition for biomedical applications was discussed among the composites studied.

Keywords: biocomposites, sintering temperature, biocompatibility, electrical property, conductivity, mechanical property

Procedia PDF Downloads 373
45 Influence of Iron Ore Mineralogy on Cluster Formation inside the Shaft Furnace

Authors: M. Bahgat, H. A. Hanafy, S. Lakdawala

Abstract:

Clustering phenomenon of pellets was observed frequently in shaft processes operating at higher temperatures. Clustering is a result of the growth of fibrous iron precipitates (iron whiskers) that become hooked to each other and finally become crystallized during the initial stages of metallization. If the pellet clustering is pronounced, sometimes leads to blocking inside the furnace and forced shutdown takes place. This work clarifies further the relation between metallic iron whisker growth and iron ore mineralogy. Various pellet sizes (6 – 12.0 & +12.0 mm) from three different ores (A, B & C) were (completely and partially) reduced at 985 oC with H2/CO gas mixture using thermos-gravimetric technique. It was found that reducibility increases by decreasing the iron ore pellet’s size. Ore (A) has the highest reducibility than ore (B) and ore (C). Increasing the iron ore pellet’s size leads to increase the probability of metallic iron whisker formation. Ore (A) has the highest tendency for metallic iron whisker formation than ore (B) and ore (C). The reduction reactions for all iron ores A, B and C are mainly controlled by diffusion reaction mechanism.

Keywords: shaft furnace, cluster, metallic iron whisker, mineralogy, ferrous metallurgy

Procedia PDF Downloads 431
44 The shaping of Metal-Organic Frameworks for Water Vapor Adsorption

Authors: Tsung-Lin Hsieh, Jiun-Jen Chen, Yuhao Kang

Abstract:

Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared.

Keywords: granulation, granules, metal-organic frameworks, water vapor adsorption

Procedia PDF Downloads 128
43 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission

Authors: Alex B. Cusick

Abstract:

The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.

Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions

Procedia PDF Downloads 150
42 Solid-State Luminescence of Fluorenone Grafted onto Cellulose Aldehyde Backbone Using Different Organic Amine Spacers

Authors: Isam M. Arafa, Mazin Y. Shatnawi, Yaser A. Yousef, Batool Zaid Al-Momani

Abstract:

The present work describes the preparation, characterization, and luminescence of a series of fluorenone (FL) based luminophores grafted onto modified cellulose microfibers. The FL is condensed onto cellulose aldehyde using three diamine spacers (H₂N-NH₂, H₂N(CH₂)₂NH₂ and H₂N(CH₂)₃NH₂) to afford Cell=Spacer=FL. The obtained products were characterized by spectroscopic (FT-IR, UV–Vis), thermal gravimetric analysis (TGA), and microscopic (Optical, SEM) techniques. The UV-Vis spectra of the FL=N(CH₂)ₓNH₂ (x = 0, 2, 3) moieties show that they are transparent in the 375- 800 nm region while they exhibit intense absorption band below 350 nm attributed to n-π* and π-π* transitions. The solid-state photoluminescence (PLs-s) of the cold-pressed pellets of the FL=N(CH₂)ₓNH₂ and Cell=Spacer=FL placed in a quartz cuvette show strong emission in the 500-550 nm region upon irradiation with Xe lamp light (λex = 320 nm). The PLs-s green emission of the grafted Cell=Spacer=FL was evaluated relative to that of the FL-based precursor. These grafted conjugated products have the potential to be used as analyte sensors for typical nitroaromatics/aromatic amines and be further extended to immunoassay studies for aromatic amino acids such as phenylalanine and histidine.

Keywords: luminescence, cellulose, fluorenone, grafting, solid state

Procedia PDF Downloads 43
41 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses

Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite

Abstract:

With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.

Keywords: meat industry, energy intensity, energy efficiency, GHG emissions

Procedia PDF Downloads 335
40 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava

Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík

Abstract:

The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.

Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction

Procedia PDF Downloads 648
39 The Effect of Iron Deficiency on the Magnetic Properties of Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ M-Type Hexaferrites

Authors: Kang-Hyuk Lee, Wei Yan, Sang-Im Yoo

Abstract:

Recently, Ca₁₋ₓLaₓFe₁₂O₁₉ (Ca-La M-type) hexaferrites have been reported to possess higher crystalline anisotropy compared with SrFe₁₂O₁₉ (Sr M-type) hexaferrite without reducing its saturation magnetization (Ms), resulting in higher coercivity (Hc). While iron deficiency is known to be helpful for the growth and the formation of NiZn spinel ferrites, the effect of iron deficiency in Ca-La M-type hexaferrites has never been reported yet. In this study, therefore, we tried to investigate the effect of iron deficiency on the magnetic properties of Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ hexaferrites prepared by solid state reaction. As-calcined powder was pressed into pellets and sintered at 1275~1325℃ for 4 h in air. Samples were characterized by powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and scanning electron microscope (SEM). Powder XRD analyses revealed that Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ (0.75 ≦ y ≦ 2.15) ferrites calcined at 1250-1300℃ for 12 h in air were composed of single phase without the second phases. With increasing the iron deficiency, y, the lattice parameters a, c and unite cell volumes were decreased first up to y=10.25 and then increased again. The highest Ms value of 77.5 emu/g was obtainable from the sample of Ca₀.₅La₀.₅Fe₁₂₋yO₁₉₋δ sintered at 1300℃ for 4 h in air. Detailed microstructures and magnetic properties of Ca-La M-type hexagonal ferrites will be presented for a discussion

Keywords: Ca-La M-type hexaferrite, magnetic properties, iron deficiency, hexaferrite

Procedia PDF Downloads 431
38 Design, Development and Application of a Green Manure Fertilizer Based on Mucuna Pruriens (L.) in Pelletized Presentation

Authors: Andres Zuñiga Orozco

Abstract:

Green manure fertilizers have special importance in the development of organic and sustainable agriculture as a substitute or complement to chemical fertilization. They have many advantages, but they have application limitations in greenhouse crops and in open field crops that have low growing size. On the other hand, the logistics of sowing, harvesting and applying have been difficult for producers to adopt. For this reason, a pelletized presentation was designed in conjunction with Trichoderma harzianum. The biopellet was applied in pineapple as the first experience, managing to improve carbon levels in the soil and some nutrients. Then it was applied to tomatoes where it was proven that, nutritionally, it is possible to nourish the crop up to day 60 only with the biopellet, improve carbon levels in soil and control the fungus Fusarium oxysporum. Subsequently, it was applied to coffee seedlings with an organo-mineral formulation. Here, the improvement in the growth and nutrition of the plants was notable, as well as the increase in the microbial activity of the soil. M. pruriens biopellets allow crops to be nourished, allow biocontrolers to be added, improve soil conditions to promote greater microbial activity, reincorporate carbon and CO2 into the soil, are easily applicable, allow dosing and have a favorable shelf-life. They can be applied to all types of crops, both in the greenhouse and in the field.

Keywords: Mucuna pruriens, pellets, carbon, Trichoderma, Fusarium

Procedia PDF Downloads 24
37 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 411
36 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 µm) and structured US–Y catalyst film (Si/Al = 8, thickness 23µm) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, structured catalyst, zeolite Y, zeolite ZSM-5

Procedia PDF Downloads 355
35 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak

Abstract:

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Keywords: biomass, briquettes, densification, fuel quality, moisture content, density

Procedia PDF Downloads 397
34 Nuclear Characteristics of a Heterogeneous Thorium-Based Fuel Design Aimed at Increasing Fuel Cycle Length of a Typical PWR

Authors: Hendrik Bernard Van Der Walt, Frik Van Niekerk

Abstract:

Heterogeneous thorium-based fuels have been proposed as an alternative for conventional reactor fuels and many studies have shown promising results. Fuel cycle characteristics still have to be explored in detail. This study investigates the use of a novel thorium-based fuel design aimed at increasing fuel cycle length of a typical PWR with an explicit focus on thorium- uranium content, neutron spectrum, flux considerations and neutron economy.As nuclear reactions are highly dependent on reactor flux and material matrix, analytical and numerical calculations have been completed to predict the behaviour of the proposed nuclear fuel. The proposed design utilizes various ratios of thorium oxide and uranium oxide pellets within fuel pins, divided into heterogeneous sections of specified length. This design renders multiple regions with unique characteristics. The goal of this study is to determine and optimally utilize these characteristics. Proliferation considerations result in the need for denaturing of heterogeneous regions, which renders more unique characteristics, these aspects were examined in this study. Finally, the use of fertile thorium to emulate a burnable poison for managing excess BOL reactivity has been investigated, as well as an option for flux shaping in a typical PWR.

Keywords: nuclear fuel, nuclear characteristics, nuclear fuel cycle, thorium-based fuel, heterogeneous design

Procedia PDF Downloads 109
33 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping

Procedia PDF Downloads 212
32 Effect of B2O3 Addition on Sol-gel Synthesized 45S5 Bioglass

Authors: P. Dey, S. K. Pal

Abstract:

Ceramics or glass ceramics with the property of bone bonding at the nearby tissues and producing possible bone in growth are known to be bioactive. The most extensively used glass in this context is 45S5 which is a silica based bioglass mostly explored in the field of tissue engineering as scaffolds for bone repair. Nowadays, the borate based bioglass are being utilized in orthopedic area largely due to its superior bioactivity with the formation of bone bonding. An attempt has been made, in the present study, to observe the effect of B2O3 addition in 45S5 glass and perceive its consequences on the thermal, mechanical and biological properties. The B2O3 was added in 1, 2.5, and 5 wt% with simultaneous reduction in the silica content of the 45S5 composition. The borate based bioglass has been synthesized by the means of sol-gel route. The synthesized powders were then thermally analyzed by DSC-TG. The as synthesized powders were then calcined at 600ºC for 2hrs. The calcined powders were then pressed into pellets followed by sintering at 850ºC with a holding time of 2hrs. The phase analysis and the microstructural analysis of the as synthesized and calcined powder glass samples and the sintered glass samples were being carried out using XRD and FESEM respectively. The formation of hydroxyapatite layer was performed by immersing the sintered samples in the simulated body fluid (SBF) and mechanical property has been tested for the sintered samples by universal testing machine (UTM). The sintered samples showed the presence of sodium calcium silicate phase while the formation of hydroxyapaptite takes place for SBF immersed samples. The formation of hydroxyapatite is more pronounced in case of borated based glass samples instead of 45S5.

Keywords: 45S5 bioglass, bioactive, borate, hydroxyapatite, sol-gel synthesis

Procedia PDF Downloads 232
31 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features

Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed

Abstract:

Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.

Keywords: 3D printing, fluorescent, packaging, security

Procedia PDF Downloads 69
30 Development of Hierarchically Structured Tablets with 3D Printed Inclusions for Controlled Drug Release

Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek

Abstract:

Drug dosage forms consisting of multi-unit particle systems (MUPS) for modified drug release provide a promising route for overcoming the limitation of conventional tablets. Despite the conventional use of pellets as units for MUP systems, 3D printed polymers loaded with a drug seem like an interesting candidate due to the control over dosing that 3D printing mechanisms offer. Further, 3D printing offers high flexibility and control over the spatial structuring of a printed object. The final MUPS tablets include PVP and HPC as granulate with other excipients, enabling the compaction process of this mixture with 3D printed inclusions, also termed minitablets. In this study, we have developed the multi-step production process for MUPS tablets, including the 3D printing technology. The MUPS tablets with incorporated 3D printed minitablets are a complex system for drug delivery, providing modified drug release. Such structured tablets promise to reduce drug fluctuations in blood, risk of local toxicity, and increase bioavailability, resulting in an improved therapeutic effect due to the fast transfer into the small intestine, where particles are evenly distributed. Drug loaded 3D printed minitablets were compacted into the excipient mixture, influencing drug release through varying parameters, such as minitablets size, matrix composition, and compaction parameters. Further, the mechanical properties and morphology of the final MUPS tablets were analyzed as many properties, such as plasticity and elasticity, can significantly influence the dissolution profile of the drug.

Keywords: 3D printing, dissolution kinetics, drug delivery, hot-melt extrusion

Procedia PDF Downloads 67
29 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 308
28 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries

Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera

Abstract:

In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.

Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes

Procedia PDF Downloads 232
27 A Review on Benzo(a)pyrene Emission Factors from Biomass Combustion

Authors: Franziska Klauser, Manuel Schwabl, Alexander Weissinger, Christoph Schmidl, Walter Haslinger, Anne Kasper-Giebl

Abstract:

Benzo(a)pyrene (BaP) is the most widely investigated representative of Polycyclic Aromatic Hydrocarbons (PAH) as well as one of the most toxic compounds in this group. Since 2013 in the European Union a limit value for BaP concentration in the ambient air is applied, which was set to a yearly average value of 1 ng m-3. Several reports show that in some regions, even where industry and traffic are of minor impact this threshold is regularly exceeded. This is taken as proof that biomass combustion for heating purposes contributes significantly to BaP pollution. Several investigations have been already carried out on the BaP emission behavior of biomass combustion furnaces, mostly focusing on a certain aspect like the influences from wood type, of operation type or of technology type. However, a superior view on emission patterns of BaP from biomass combustion and the aggregation of determined values also from recent studies is not presented so far. The combination of determined values allows a better understanding of the BaP emission behavior from biomass combustion. In this work the review conclusions are driven from the combination of outcomes from different publication. In two examples it was shown that technical progress leads to 10 to 100 fold lower BaP emission from modern furnaces compared to old technologies of equivalent type. It was also indicated that the operation with pellets or wood chips exhibits clearly lower BaP emission factors compared to operation with log wood. Although, the BaP emission level from automatic furnaces is strongly impacted by the kind of operation. This work delivers an overview on BaP emission factors from different biomass combustion appliances, from different operation modes and from the combustion of different fuel and wood types. The main impact factors are depicted, and suggestions for low BaP emission biomass combustion are derived. As one result possible investigation fields concerning BaP emissions from biomass combustion that seem to be most important to be clarified are suggested.

Keywords: benzo(a)pyrene, biomass, combustion, emission, pollution

Procedia PDF Downloads 335
26 Surface Modification of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites

Authors: Januar Parlaungan Siregar, Davindra Brabu Mathivanan, Dandi Bachtiar, Mohd Ruzaimi Mat Rejab, Tezara Cionita

Abstract:

Natural fibres play a significant role in mass industries such as automotive, construction and sports. Many researchers have found that the natural fibres are the best replacement for the synthetic fibres in terms of cost, safety, and degradability due to the shortage of landfill and ingestion of non biodegradable plastic by animals. This study mainly revolved around pineapple leaf fibre (PALF) which is available abundantly in tropical countries and with excellent mechanical properties. The composite formed in this study is highly biodegradable as both fibre and matrix are both derived from natural based products. The matrix which is polylactic acid (PLA) is made from corn starch which gives the upper hand as both material are renewable resources are easier to degrade by bacteria or enzyme. The PALF is treated with different alkaline solution to remove excessive moisture in the fibre to provide better interfacial bonding with PLA. Thereafter the PALF is washed with distilled water several times before placing in vacuum oven at 80°C for 48 hours. The dried PALF later were mixed with PLA using extrusion method using fibre in percentage of 30 by weight. The temperature for all zone were maintained at 160°C with the screw speed of 50 rpm for better bonding and afterwards the products of the mixture were pelletized using pelletizer. The pellets were placed in the specimen-sized mould for hot compression under the temperature of 170°C at 5 MPa for 5 min and subsequently were cold pressed under room temperature at 5 MPa for 5 min. The specimen were tested for tensile and flexure strength according to American Society for Testing and Materials (ASTM) D638 and D790 respectively. The effect of surface modification on PALF with different alkali solution will be investigated and compared.

Keywords: natural fibre, PALF, PLA, composite

Procedia PDF Downloads 268
25 Classification System for Soft Tissue Injuries of Face: Bringing Objectiveness to Injury Severity

Authors: Garg Ramneesh, Uppal Sanjeev, Mittal Rajinder, Shah Sheerin, Jain Vikas, Singla Bhupinder

Abstract:

Introduction: Despite advances in trauma care, a classification system for soft tissue injuries of the face still needs to be objectively defined. Aim: To develop a classification system for soft tissue injuries of the face; that is objective, easy to remember, reproducible, universally applicable, aids in surgical management and helps to develop a structured data that can be used for future use. Material and Methods: This classification system includes those patients that need surgical management of facial injuries. Associated underlying bony fractures have been intentionally excluded. Depending upon the severity of soft tissue injury, these can be graded from 0 to IV (O-Abrasions, I-lacerations, II-Avulsion injuries with no skin loss, III-Avulsion injuries with skin loss that would need graft or flap cover, and IV-complex injuries). Anatomically, the face has been divided into three zones (Zone 1/2/3), as per aesthetic subunits. Zone 1e stands for injury of eyebrows; Zones 2 a/b/c stand for nose, upper eyelid and lower eyelid respectively; Zones 3 a/b/c stand for upper lip, lower lip and cheek respectively. Suffices R and L stand for right or left involved side, B for presence of foreign body like glass or pellets, C for extensive contamination and D for depth which can be graded as D 1/2/3 if depth is still fat, muscle or bone respectively. I is for damage to facial nerve or parotid duct. Results and conclusions: This classification system is easy to remember, clinically applicable and would help in standardization of surgical management of soft tissue injuries of face. Certain inherent limitations of this classification system are inability to classify sutured wounds, hematomas and injuries along or against Langer’s lines.

Keywords: soft tissue injuries, face, avulsion, classification

Procedia PDF Downloads 359
24 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters

Authors: Natalia Fijol, Aji P. Mathew

Abstract:

We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.

Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid

Procedia PDF Downloads 92
23 Distribution and Habitat Preference of Red Panda (Ailurus Fulgens Fulgens) in Jumla District, Nepal

Authors: Saroj Panthi, Sher Singh Thagunna

Abstract:

Reliable and sufficient information regarding status, distribution and habitat preference of red panda (Ailurus fulgens fulgens) is lacking in Nepal. The research activities on red panda in the mid-western Nepal are very limited, so the status of red panda in the region is quite unknown. The study conducted during May, 2013 in three Village Development Committees (VDCs) namely Godhemahadev, Malikathata and Tamti of Jumla district was an important step for providing vital information including distribution and habitat preference of this species. The study included the reconnaissance, key informants survey, interviews, and consultation for the most potential area identification, opportunistic survey comprising the direct observation and indirect sign count method for the presence and distribution, habitat assessment consisting vegetation sampling and ocular estimation. The study revealed the presence of red panda in three forests namely Bahirepatan, Imilchadamar and Tyakot of Godhemahadev, Tamti and Malikathata VDCs respectively. The species was found distributed between 2880 and 3244 m with an average dropping encounter rate of 1.04 per hour of searching effort and 12 pellets per dropping. Red panda mostly preferred the habitat in the elevation range of 2900 - 3000 m with southwest facing steep slopes (36˚ - 45˚), associated with water sources at the distance of ≤100 m. Trees such as Acer spp., Betula utilis and Quercus semecarpifolia, shrub species of Elaeagnus parvifolia, Drepanostachyum spp. and Jasminum humile, and the herbs like Polygonatum cirrhifolium, Fragaria nubicola and Galium asperifolium were found to be the most preferred species by red panda. The red panda preferred the habitat with dense crown coverage ( >20% - 100%) and 31% - 50% ground cover. Fallen logs (39%) were the most preferred substrate used for defecation.

Keywords: distribution, habitat preference, jumla, red panda

Procedia PDF Downloads 287
22 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method

Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy

Abstract:

In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.

Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence

Procedia PDF Downloads 252
21 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods

Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux

Abstract:

Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.

Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing

Procedia PDF Downloads 160
20 Evaluation of Molasses and Sucrose as Cabohydrate Sources for Biofloc System on Nile Tilapia (Oreochromis niloticus) Performances

Authors: A. M. Nour, M. A. Zaki, E. A. Omer, Nourhan Mohamed

Abstract:

Performances of mixed-sex Nile tilapia (Oreochromis niloticus) fingerlings (11.33 ± 1.78 g /fish) reared under biofloc system developed by molasses and sucrose as carbon sources in indoor fiberglass tanks were evaluated. Six indoor fiberglass tanks (1m 3 each filled with 1000 l of underground fresh water), each was stocked with 2kg fish were used for 14 weeks experimental period. Three experimental groups were designed (each group 2 tanks) as following: 1-control: 20% daily without biofloc, 2-zero water exchange rate with biofloc (molasses as C source) and 3-zero water exchange rate with biofloc (sucrose as C source). Fish in all aquariums were fed on floating feed pellets (30% crude protein, 3 mm in diameter) at a rate of 3% of the actual live fish body, 3 times daily and 6 days a week. Carbohydrate supplementations were applied daily to each tank two hrs, after feeding to maintain the carbon: nitrogen ratio (C: N) ratio 20:1. Fish were reared under continuous aeration by pumping air into the water in the tank bottom using two sandy diffusers and constant temperature between 27.0-28.0 ºC by using electrical heaters for 10 weeks. Criteria's for assessment of water quality parameters, biofloc production and fish growth performances were collected and evaluated. The results showed that total ammonia nitrogen in control group was higher than biofloc groups. The biofloc volumes were 19.13 mg/l and 13.96 mg/l for sucrose and molasses, respectively. Biofloc protein (%), ether extract (%) and gross energy (kcal/100g DM), they were higher in biofloc molasses group than biofloc sucrose group. Tilapia growth performances were significantly higher (P < 0.05) with molasses group than in sucrose and control groups, respectively. The highest feed and nutrient utilization values for protein efficiency ratio (PER), protein productive (PPV%) and energy utilization (EU, %) were higher in molasses group followed by sucrose group and control group respectively.

Keywords: biofloc, Nile tilapia, cabohydrates, performances

Procedia PDF Downloads 162
19 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures

Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim

Abstract:

Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.

Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate

Procedia PDF Downloads 102
18 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 32
17 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 229