Search results for: oxygen evolution reaction (OER).
5489 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst
Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski
Abstract:
Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution
Procedia PDF Downloads 2155488 CuFeOx-Based Nano-Rose Electrocatalysts for Oxygen Evolution Reaction
Authors: Hamad Almohamadi, Nabeel H. Alharthi, Abdulrahman Aljabri
Abstract:
In this study, two-dimensional CuFeOx is deposited on nickel foam for the fabrication of electrocatalyst for oxygen evolution reaction (OER). The in-situ hydrothermal synthesis of CuFeOx in presence of aloe vera extract was found to yield unique nano-rose-like morphology which aided to improve the electrochemical surface area of the electrode. The phytochemical assisted synthesis of CuFeOx using 75% aloe vera extract resulted in improved OER electrocatalytic performance by attaining the overpotential of 310 mV for 50 mA cm−2 and 410 mV for 100 mA cm−2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, thus proving to be prospective electrode material for efficient OER in electrochemical water splitting.Keywords: water splitting, phytochemicals, oxygen evaluation reaction, Tafel's slope, stability
Procedia PDF Downloads 1185487 Graphene-reinforced Metal-organic Framework Derived Cobalt Sulfide/Carbon Nanocomposites as Efficient Multifunctional Electrocatalysts
Authors: Yongde Xia, Laicong Deng, Zhuxian Yang
Abstract:
Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced cobalt sulfide/carbon nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of cobalt sulfide embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis-Mass spectroscopy, Scanning electronic microscopy, Transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It was found that cobalt sulfide nanoparticles were homogenously dispersed in the in-situ formed N, S co-doped porous carbon/Graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% current after continuously running for around 5 hours, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active cobalt sulfide and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.Keywords: MOF derivative, graphene, electrocatalyst, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction
Procedia PDF Downloads 565486 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications
Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong
Abstract:
High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition
Procedia PDF Downloads 1285485 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 2365484 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction
Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki
Abstract:
Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals
Procedia PDF Downloads 1355483 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst
Authors: Kamran Dastafkan, Chuan Zhao
Abstract:
Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction
Procedia PDF Downloads 1365482 A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions
Authors: Zhanzhao Fu, Chongyi Ling, Jinlan Wang
Abstract:
Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts.Keywords: DFT, SACs, OER, ORR, HER
Procedia PDF Downloads 815481 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction
Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj
Abstract:
Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide
Procedia PDF Downloads 2095480 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction
Authors: Renzhi Qi, Zhaoping Zhong
Abstract:
Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction
Procedia PDF Downloads 865479 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery
Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman
Abstract:
Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium
Procedia PDF Downloads 845478 Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions
Authors: Tran Le Luu, Jeyong Yoon
Abstract:
RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances.Keywords: RuO2, electro-catalyst, sol-gel, microwave, chlorine, oxygen evolution
Procedia PDF Downloads 2575477 NiSe-Ni₃Se₂/Multiwalled Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media
Authors: Oluwaseun A. Oyetade, Roelof J. Kriek
Abstract:
The development of effective catalysts for the oxygen evolution reaction (OER) is of great importance to combat energy-related concerns in the environment. Herein, we report a one-step solvothermal method employed for the fabrication of nickel selenide hybrids (NiSe-Ni₃Se₂) and a series of nickel selenide hybrid/multiwalled carbon nanotube composites (NiSe-Ni₃Se₂/MWCNT) as electrocatalysts for OER in alkaline media. The catalytic activities of these catalysts were investigated via several electrochemical characterization techniques, such as linear sweep voltammetry, chronoamperometric studies at constant potential, electrochemical surface area determination, and Tafel slope calculation, under alkaline conditions. Morphological observations demonstrated the agglomeration of non-uniform NiSe-Ni₃Se₂ microspheres around carbon nanotubes (CNTs), demonstrating the successful synthesis of NiSe-Ni₃Se₂/MWCNT nanocomposites. Among the tested electrocatalysts, the 20% NiSe-Ni₃Se₂/MWCNT nanocomposite demonstrated the highest activity, exhibiting an overpotential of 325 mV to achieve a current density of 10 mA.cm⁻² in 0.1 mol.dm⁻³ KOH solution. The NiSe-Ni₃Se₂/MWCNT nanocomposites showed improved activity toward OER compared to bare NiSe-Ni₃Se₂ hybrids and MWCNTs, exhibiting an overpotential of 528, 392 and 434 mV for 10%, 30% and 50% NiSe-Ni₃Se₂/MWCNT nanocomposites, respectively. These results compare favourably to the overpotential of noble catalysts, such as RuO₂ and IrO₂. Our results imply that the addition of MWCNTs increased the activity of NiSe-Ni₃Se₂ hybrids due to an increased number of catalytic sites, dispersion of NiSe-Ni₃Se₂ hybrid nanoparticles, and electronic conductivity of the nanocomposites. These nanocomposites also demonstrated better long-term stability compared to NiSe-Ni₃Se₂ hybrids and MWCNTs. Hence, NiSe-Ni₃Se₂/MWCNT nanocomposites possess the potential as effective electrocatalysts for OER in alkaline media.Keywords: carbon nanotubes, electrocatalysts, nanocomposites, nickel selenide hybrids, oxygen evolution reaction
Procedia PDF Downloads 1335476 Ni-W alloy Coatings: A Promising Electrode Material
Authors: Mr. Liju Elias, A. Chitharanjan Hegde
Abstract:
Ni-W alloy coatings have been developed galvanostatically on copper substrate from tri-sodium citrate bath, using glycerol as the additive. The deposition conditions for production of Ni-W coatings have been optimized for peak performance of their electrocatalytic activity, namely hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The corrosion behavior of the coatings were tested under working conditions of electrocatalysis (1M KOH). Electrocatalytic behaviours were tested by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that Ni-W coatings at low and high current densities (c. d.) showing superior performance for OER and HER respectively. The increased electrocatalytic activity for HER with increase of deposition c. d. was attributed to the phase structure, surface morphology and chemical composition of the coatings, confirmed by XRD, SEM and EDX analysis, respectively. The dependency of hardness and thickness of the coatings on HER and OER were examined, and results were discussed.Keywords: electrocatalytic behavior, HER, Ni-W alloy, OER
Procedia PDF Downloads 4195475 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst
Authors: Peikun Zhang, Chunhua Cui
Abstract:
Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting
Procedia PDF Downloads 1265474 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion
Authors: J. H. Park, R. H. Hwang, K. B. Yi
Abstract:
Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method
Procedia PDF Downloads 2125473 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery
Authors: Augustus K. Lebechi, Kenneth I. Ozoemena
Abstract:
Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.
Procedia PDF Downloads 665472 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template
Procedia PDF Downloads 3815471 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles
Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin
Abstract:
Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles
Procedia PDF Downloads 1475470 Advancing OER Catalysis with Mn-Doped CoFe-LDH: A Scalable 3D Nanostructured Catalyst for Sustainable and High-Performance Energy Technologies
Authors: Rajini Murugesan, Anantharaj Sengeni, Arthanareeswari Maruthapillai
Abstract:
The global transition to renewable energy hinges on breakthroughs in catalysis for the oxygen evolution reaction (OER) a bottleneck in fuel cell and water-splitting technologies. The 3D nanostructured Mn-doped CoFe-LDH catalyst merges high-performance engineering with next-generation material design. By leveraging the synergistic effects of Mn doping within the CoFe-LDH framework, this self-supported catalyst achieves a quantum leap in OER efficiency. The strategically tailored 3D architecture amplifies active surface areas and facilitates seamless electron transport, while Mn incorporation fine-tunes the electronic structure, unlocking new catalytic pathways. Synthesized through an accessible hydrothermal approach, the material redefines scalability in catalyst production. The Mn-doped CoFe-LDH delivers industry-leading performance, with an impressively low overpotential of 255 mV at 20 mA cm⁻², combined with enduring stability over 24 hours of rigorous operation in alkaline media. This remarkable performance not only rivals state-of-the-art alternatives but also offers a sustainable, cost-effective solution tailored for real-world energy applications. Our findings bridge the gap between material innovation and practical implementation, setting a benchmark for OER catalysis in the era of clean energy. The Mn-doped CoFe-LDH isn’t just a catalyst; it’s a vision for the future of sustainable energy technologies.Keywords: clean energy, fuel cells, layered double hydroxides (LDH), oxygen evolution reaction (OER).
Procedia PDF Downloads 35469 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs
Authors: Jamal Hussain Al-Smail
Abstract:
Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.Keywords: fuel cells, material porosity design, mathematical modeling, porous media
Procedia PDF Downloads 1555468 Effect of Dissolved Oxygen Concentration on Iron Dissolution by Liquid Sodium
Authors: Sami Meddeb, M. L Giorgi, J. L. Courouau
Abstract:
This work presents the progress of studies aiming to guarantee the lifetime of 316L(N) steel in a sodium-cooled fast reactor by determining the elementary corrosion mechanism, which is akin to an accelerated dissolution by dissolved oxygen. The mechanism involving iron, the main element of steel, is particularly studied in detail, from the viewpoint of the data available in the literature, the modeling of the various mechanisms hypothesized. Experiments performed in the CORRONa facility at controlled temperature and dissolved oxygen content are used to test both literature data and hypotheses. Current tests, performed at various temperatures and oxygen content, focus on specifying the chemical reaction at play, determining its free enthalpy, as well as kinetics rate constants. Specific test configuration allows measuring the reaction kinetics and the chemical equilibrium state in the same test. In the current state of progress of these tests, the dissolution of iron accelerated by dissolved oxygen appears as directly related to a chemical complexation reaction of mixed iron-sodium oxide (Na-Fe-O), a compound that is soluble in the liquid sodium solution. Results obtained demonstrate the presence in the solution of this corrosion product, whose kinetics is the limiting step under the conditions of the test. This compound, the object of hypotheses dating back more than 50 years, is predominant in solution compared to atomic iron, presumably even for the low oxygen concentration, and cannot be neglected for the long-term corrosion modeling of any heat transfer system.Keywords: corrosion, sodium fast reactors, iron, oxygen
Procedia PDF Downloads 1845467 Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications
Authors: Peter M. Schneider, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka
Abstract:
Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon.Keywords: ORR, electrochemistry, electrocatalyst, synthesis
Procedia PDF Downloads 865466 Enhanced Oxygen Reduction Reaction by N-Doped Mesoporous Carbon Nanospheres
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of Nitrogen-doped mesoporous carbon spheres (NMC) was synthesized via a facile dual soft-templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro) chemical properties of the NMCs have been comprehensively investigated to pave the way for feasible design of nitrogen-containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity and high nitrogen content, which make it as a highly efficient ORR metal-free catalyst in alkaline solutions.Keywords: porous carbon, N-doping, oxygen reduction reaction, soft-template
Procedia PDF Downloads 2565465 Advanced Metallic Frameworks for Development of Robust and Efficient Water Splitting Electrodes
Authors: Tam D. Nguyen, Joe Varga, Douglas MacFarlane, Alexandr Simonov
Abstract:
Development of advanced technologies for green hydrogen generation from renewables is of key strategic importance to global future energy security and economic growth. Renewable-powered water electrolysis (WE) is considered as the most effective of the sustainable methods for hydrogen generation at scale. Currently, the greatest challenge of hydrogen production via water electrolysis is the insufficiently high efficiency. In which, the energy loss associated with the conversion of water to hydrogen is approximately 40-60%, with 30-35% associated with the electrolysis itself and 10-12% with gas compression and transportation. Hence, development of an energy-efficient water electrolyser that can generate hydrogen at high pressure will address both of these major challenges. This requires the development of advanced electrode configuration of the water electrolysis cell. Herein, we developed a highly-ordered interconnected structure of the metallic inverse-opal (IO) frameworks based on low cost materials, e.g. Cu, Ni, Fe, Co. The water electrolysis electrodes based on these frameworks can provide excellent mechanical strength required for the application under conditions of extreme pressure, as well as outstanding catalytic performance through the exceptional high surface area and high electrical conductivity. For example, NiFe layered double hydroxide (LDH) catalyst deposited on Cu IO is able to reach the oxygen evolution reaction (OER) catalytic performance up to the rates of > 100 mA cm−2 (>727A gcatalyst-1) at an overpotential of ~0.3 V. This high performance is achieved with only few micron-thick catalyst layers, in contrast to similarly performance of 103-fold thicker electrodes based on foams and other substrates.Keywords: oxygen evolution reaction, support materials, mass transport, NiFe LDH
Procedia PDF Downloads 105464 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst
Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka
Abstract:
The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface
Procedia PDF Downloads 895463 Single Cu‒N₄ Sites Enable Atomic Fe Clusters with High-Performance Oxygen Reduction Reaction
Abstract:
Atomically dispersed Fe‒N₄ catalysts are proven as promising alternatives to commercial Pt/C for the oxygen reduction reaction. Most reported Fe‒N₄ catalysts suffer from inferior O‒O bond-breaking capability due to superoxo-like O₂ adsorption, though the isolated dual-atomic metal sites strategy is extensively adopted. Atomic Fe clusters hold greater promise for promoting O‒O bond cleavage by forming peroxo-like O₂ adsorption. However, the excessively strong binding strength between Fe clusters and oxygenated intermediates sacrifices the activity. Here, we first report a Fex/Cu‒N@CF catalyst with atomic Fe clusters functionalized by adjacent single Cu‒N₄ sites anchoring on a porous carbon nanofiber membrane. The theoretical calculation indicates that the single Cu‒N₄ sites can modulate the electronic configuration of Fe clusters to reduce O₂* protonation reaction free energy, which ultimately enhances the electrocatalytic performance. Particularly, the Cu‒N₄ sites can increase the overlaps between the d orbitals of Fe and p orbitals of O to accelerate O‒O cleavage in OOH*. As a result, this unique atomic catalyst exhibits a half potential (E1/2) of 0.944 V in an alkaline medium exceeding that of commercial Pt/C, whereas acidic performance E1/2 = 0.815 V is comparable to Pt/C. This work shows the great potential of single atoms for improvements in atomic cluster catalysts.Keywords: Hierarchical porous fibers, atomic Fe clusters, Cu single atoms, oxygen reduction reaction; O-O bond cleavage
Procedia PDF Downloads 1195462 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.Keywords: alkaline fuel cell, graphene, metal-free catalyst, paraphenylen diamine
Procedia PDF Downloads 4825461 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys
Authors: Dong Bok Lee, Min Jung Kim
Abstract:
The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment
Procedia PDF Downloads 3195460 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air
Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong
Abstract:
It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde
Procedia PDF Downloads 134